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I. INTRODUCTION

For more than fifty years it has been recognized that our understanding
of turbulent flows is very incomplete. A quotation attributed to Sir Horace
Lamb in 1932 might still be appropriate.

Iam an old man now, and when I die and go to Heaven there

are two matters on which I hope for enlightenment. One is

quantum electrodynamics and the other is the turbulent

motion of fluids. And about the former I am rather

optimistic.

According to Hinze,1

Turbulent fluid motion is an irregular condition of flow in

which the various quantities show a random variation with

time and space coordinates so that statistically distinct

average values can be discerned.

We are all familiar with some of the differences between laminar and
turbulent flows. Usually, higher values of friction drag and pressure drop
are associated with turbulent flows. The diffusion rate of a scalar quantity
is usually greater in a turbulent flow than in a laminar flow (increased "mix-
ing") and turbulent flows are usually noisier. A turbulent boundary layer can
usually negotiate a more extensive region of unfavorable pressure gradient
prior to separation than can a laminar boundary layer.

The subject of turbulence has absorbed the energies of countless research
workers over a period of more than two decades. It still continues to be an
area of research where lack of complete understanding prevails. A listing of
excellent references on the subject of turbulence is given in the Bibliography
at the end of this report. Turbulent motion is a time-dependent phenomenon
and thus, the unsteady Navier-Stokes equations are considered to govern the
time history of a fluid particle in a turbulent flow. Numerical procedures
are available for solving such equations; however, it is almost impossible to
completely analyze a turbulent flow in this way. The main problem is that the
time and space SCdles of the turbulent motion are extremely small. A grid
fine enough to resolve the small scale motions of turbulence would therefore
require an immense and impracticable number of points. The number of grid
points required and the small size of the time steps puts the practical compu-
tation of turbulent flows by this means outside the realm of possibility for

1. J. 0. Hinze, Tub~ne 2nd Edition, Mcva-Hill, New York, 1975.
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present computers. Some researchers are optimistic that by the turn of the
century computer technology will have advanced to where turbulent flow calcu-
lations can be made from first principles.

The main thrust of present day research in computational fluid mechanics
and heat transfer in turbulent flows is through the time averaged Navier-
Stokes equations which historically have been referred to as the Reynolds
equations of motion in many circles. Time averaging the equations of motion ":'"
gives rise to new terms which can be interpreted as new "apparent" stress
gradients and heat flux quantities associated with the turbulent motion.
These new quantities must be related to the mean flow variables through turbu-
lence models whici introduce further assumptions and approximations. Thus,
this attack on the turbulent flow problem through solving the Reynolds equa-
tions of motion does not follow entirely from first principles since addition-
al assumptions must be made to "close" the system of equations. This closure
is achieved via turbulence models. A turbulence model consists of a set of
differential equations and/or algebraic equations and associated constants,
the solutions of which, in conjunction with the equations of mean motion,
closely simulate the averaged character of real turbulent flows.

Various turbulence models have been proposed. Zero-equation models are
useful in engineering applications but their applicability is limited to near
equilibrium flows. 2  One-equation models increase the computational work and
do not bring improvement in universality and predictive capability that would
justify their use. Two-equation models are more universal and less empirical.
Higher order Reynolds stress models are sophisticated and have gained less
popularity than two-equation models. In the present study numerical computa-
tions are made using Chien's 3  k-E two-equation turbulence model which is
similar to that of Jones and Launder. 4- 6 Calculations are extended up to the
wall and the exact values of the dependent variables at the wall are used as
boundary conditions.

2. A. J. Wadcock, "Simple Turbulence Models and Their Applications to
Roundary Layer Separation," NASA CR-3283, May 1980.

.3. *?:oi-Yuan Chien, "Predictions of Channel and Boundary-Layer Flows with a
,,w-Reynolds-Number Turbulence Model, " AIAA Journal, Vol. 20, January
1.9q2, pp. 33-38.

4. W. P. Jones and B. E. Launder, "The Prediction of Laminarization with a
two-Equation Model of Turbulence," Int. Journal of Heat and Mass Trans-
fer, Vol. 15, 1972.

5. W. P. Jones and B. E. Launder, "The Calculation of Low-Reynolde-Nuhmber
Ph,'nomena with a Two-Equation Model of Turbulence, " Int. Journal of Heat
and Mass Transfer, Vol. 16, 1973.

6. R. F. Launder, C. H. Pridden, and B. T. Sharma, "The Calculation of
Turbulent Boundary Layers on Spinning and Curved Surfaces," Journal of
Fluids Engineering, March 1977, pp. 231-239.
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Most of the well-known turbulence models lead to parabolic systems of
partial differential equations when coupled with the conservation equations.
A large variety of numerical methods for solving parabolic partial differen-
tial equations have been used to calculate boundary-layer flows with various
levels of success. The Hartree-Womersley method7  for solving parabolic
equations has been employed to solve the equations for laminar and turbulent
boundary layer flows. The method treats derivatives in the transverse direc-
tion as ordinary derivatives and expresses the streamwise derivative as a
finite-difference. This reduces the system of partial differential equations
to a sequence of ordinary differential equations to be solved in succession as
the integration proceeds downstream from one station to the next. The two-
point boundary-value problem for the ordinary differential equations can be
solved by the shooting method. The inconvenience associated with handling the
two-point boundary conditions has contributed to an apparent movement away
from this method to more conventional finite-difference procedures.

Finite-difference schemes, ranging from simple conventional ones to more
sophisticated variants, have been used extensively. PletcherB used the
DuFort-Frankel explicit scheme to calculate incompressible and compressible
turbulent boundary layers. The stability constraint associated with the
explicit scheme does restrict the allowed step size for numerical integration.
Implicit schemes do not have that constraint. Diagonal dominance however,
plays an important part in these schemes. 9  Examples of the implicit methods
can be found in the work of Patankar and Spalding,1" Harris"1 and Blottner 12

mong others. Implicit schemes of Crank-Nicolson's type have been applied to

7. P. R. Hartree and J. R. Womersley, "A Method for the Numerica or Mechan-
ica' Solution of Certain Types of Partial Differential Equations," Proc.
r.o,,al Soc. London, A161, p. 313, 1937.

8. R. H. Pletcher, "On a Finite-Difference Solution for the Constant
Property Turbulent Boundary Layer, " AIAA Journal, Vol. 7, February l969,
pp. 305-311.

9. . S. Hirsh and D. H. Rudy, "The Role of Diagonal Dominance and Cell

Reynolds Number in Implicit Methods for Fluid Mechanics Problems,"
Journal of Computational Physics, 76, 1974, pp. 304-310.

70. 5. V. Patankar and D. B. Spalding, Heat and Mass Transfer in Boundary
Layers, Intertext Books, London, 1970.

11. J'. E. Harris, "Numerical Solution of the Equations for Compressible
Laminar, Transitional, and Turbulent Boundary Layers and Comparisons with
E.T~erimental Data, " NASA TR-R 368, 1971.

72. Y. G. Blottner, "Finite Difference Methods of Solution of the Boundary
Layer Equations," AIAA Journal, Vol. 8, 1970, pp. 193-205.
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- 2v (! ,) 2  0 (y).

In Equation (18) the symbol F is used instead of C since this notation pre-
vails in the literature. The Jones-Launder model has been proved to be a
powerful tool for the calculation of boundary layers, free shear layers, and
some recirculating flows. Rpcently, new forms of the model have been proposed
in order to improve flow predictions. 3'4 2'4 3 The model proposed by Chien 3 is
more well behaved mathematically near a solid wall and is utilized in this
study.

Chien proposed a few changes which included replacing the term

ak 
112

-'z (-2)2

in the k Equation (17) by

-2w k
y 2

This term has the advantage of being linear in k. Both the terms _ )2 and
kare important only very close to the wall and become very small away from
y 2

the wall. Thus the solution away from the wall is not adversely affected by
the inclusion of this correction term. The term in Jones-Launder model

(a__)2 is nonlinear and suffers from grti" resolution and stability problems.

Another of Chien's proposals was to make c of the order O(y2) at the
wall. In order to maintain consistency at the wall, a new term is added to
the c equation which is given by

-2v e exp 1 +

y2 
2.

42. H. 7. Hoffman, "Improved Form of "ze Lov Reynolds Number k-C Turbulence
Model, " Phys. Fluids, Vol. 78, Mach 1975, pp. 309-312.

4.3. C. H. 7. Lam and K. Rremhorst, "A Modified Form of the k-c Model for
Predicting Wall Turbulence," Journal of Fluids Engineering, Vol. 103,
September 1981, pp. 456-460.

25
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3

:her than sF,- This is considered advantageous from the computational

int of view since c has a finite value at the wall but " goes to zero at the
11. To prove this, let us expand the fluctuating velocities close to the
11 in Taylor series.

U= u1 (t)y + u2 (t)y 2 +...

V' = v1 (t)y + v2(t)y2 + (20) S

W, = W1 (t)y + w2 (t)y
2 +

3
bstituting these into the definitions of k and e,

k = 2 (u 2 + v 2 + w,)

2 + w2)y 2 + 2(ulU2 + Vl+ +WlW2 )Y 3 + .... ] (21)

3

k = O(y2)

id

qE1= - + (!YV- )2 + (3W.)2]ay ay ay

= v[(u + V2+ w) + 4(U-U 2 + VlV 2 + WlW 2 )y + .... ] (22)

£ 0(1)

212

Ok -/ 2 .- 72 -- + w I: i:,

WS 124 .-
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follows: (i) adding terms accounting for the viscous diffusion of k and C;
(ii) replacing constants Cl, c2  and C with functions of the turbulence
Reynolds number RT where

k2

RT =V • '

(iii) adding two new terms in Equations (14), and (15); hence, the proposed
equations are:

Cfp (16)PT C

Dk aT ak (112 1

P- ( +'L a )+ - 2pi (17)
t a-y' k k -+ , ay ,

De " T ae 2  2 O _ ) 2 ,(18-
p =)-l - ay [(P +-0-) T- 1 + c1 f1 - T "T ) - c 2 f 2P + 2vT (18)-

t ay 2

where

fl= 1.0,

f2= 1 - 0.3 exp (-R2),

f = exp [-2.5/(1 + 0.02 RT) ]

Inclusion of the last terms in Equations (17) and (18) makes equation (18) an
equation for the quantity

C = - 2v (ak )2  (19)ay

23
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determined by the shear stress at the wall Tw , the kinematic viscosity v, the

fluid density p and the distance y from the wall is invoked. One can then
compute the flow properties at a point beyond the viscosity-affected zone and
locate there the grid point nearest to the wall. In this approach the bound-
ary conditions are not applied at the wall but near the wall and it is refer-
red to as the wall-function method. As a result the computer time required
for the solution of the governing equations is considerably reduced, since the
necessity to resolve the steep gradients of the dependent variable in the

viscous sublayer is removed. In practice the location y+ of the first grid-
point is taken in the region

40 4 y < 100

and the values of the dependent variables are calculated from (see
Bibliography)

+Ey+

u - in (Ey ), E 9.0, K 0.41,K

k+  1 -3.33,

+ 1 2.44

Ky y •

where

+ u + yu T + k + VCu- , k = and u /T 77" .
t Y v u2  u4  w

T T

Although many flows obey these near-wall "laws" with sufficient accuracy,
deviations are observed in flows characterized by separation, strong accelera-
tion, steep temperature gradients, etc. Computation of these flows cannot be
based on near-wall region "universal laws." Therefore, turbulence models
incorporating the important influence of viscosity very close to the wall
should be utilized so that calculations can be extended up to the wall itself
and the exact values of the dependent variables at the wall can be used as
bounddry conditions.

Jones and Launder extended the k-s model to include the influence of vis-
cosity very close to the wall by modifying Equations (9), (14), and (15) as

22
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D. k-c (Two-Equation) Model

The k-E model used in the present study is based upon the one developed
by Jones and Launder4'5 where k is the turbulent kinetic energy and e is the
turbulent dissipation rate. Using the Cartesian-tensor notations, k and e are
defined in terms of the velocity fluctuations and their gradients as

k = u u'2i 1

and (13)

au, au,- )u~. -.i 1
x k  xk "

The turbulent eddy viscosity UT is,

k2

The variables k and c are determined from the solution of the following
transport equations:

Dk a k ay +UT(- u)2  p(14)

DP ay UTac FT ay 2 2  (15)
Say 1.+.

where c1 , c2, ak' a are empirical constants having the values: cl = 1.55, c2

: 2.0, ak = 1.0, a = 1.3. Equation (14) is an approximation to the exact

transport equation for k which is derived from the incompressible Navier-
Stokes equations. The e Equation (15) is formulated in analogy to the k equa-
tion since it can not be derived.

Direct effects of the molecular viscosity on turbulence structure are
neglected in most turbulence models. Viscous effects are indeed negligible
throughout most of the flow, but become important in the immediate vicinity of
a wall. An approach not used in this study is to avoid the complications of
the viscosity-dependent region adjacent to a wall. The assumption that the
mean velocity and the statistical correlations in this region are completely

21



The eddy viscosity for the outer region is given by

(OT)outer = K Ccp p Fwake Fkleb(y) (12)

where Fwake Ymax Fmax or Cwk Ymax u2 i/F the smaller of the two values.
wake max ax A max dif max'

The quantities Ymax and Fmax are determined from the function F(y) = y [w

[1 - exp(- y+/A+)] where Fmax is the maximum value of F(y) and Ymax is the

value of y at which it occurs. The function Fkleb(y) is the Klebanoff
intermittency factor given by

C y
F kleb(Y ) : [1- 5.5 (k ebY) 6 ]-I.Ymax

The quantity Udif is the difference between the maximum and minimum total ...

velocity in the profile,

Udif =(u 2 + v2 + w2)1/2 (u2 + v2 + W2) 1 2

max m )m

and for boundary layers, the minimum is defined as zero.

The outer formulation can be used in wakes as well as in attached and

separated boundary layers. For free-shear flow regions or wakes, the Van

Driest damping term [exp(- y+/A+)] is neglected. It is necessary to specify

the following constants; A+ = 26, Ccp= 1.6, Ckleb = 0.3, Cwk = 0.25, K = 0.4

and K = 0.0168. This type of simple model is generally inadequate for complex
flows. 0 ,'4 1 One model that has been used successfully to predict many flows
is the two-equation k-E model.

40. J. J. Gorski, T. R. Govindan, and B. Lakshrinar'ayana, "Computation of
Thvee-Dirensional Turbulent Shear Flcs in Corners," AIAA Paper No. 83-
1733, July 1983.

41. P. Van Gulick, "Application of the k-c Turbulence Model to a Turbulent
Boundary Layer Solution for Flow about a Spinning Yawed Projectile at
Mach 3, " Master's Thesis, University of Delaware, June 1983.
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The strength of a model lies in a combination of accuracy and general-
ity. One should not expect two-equation models to predict flows any more
accurately than simpler models; but simpler models need more extensive adjust-
ments for each different flow condition. Reynolds stress formulations are
still under development. An excellent review of the status of turbulence
modeling for computational aerodynamics has been made by Marvin 39 and the
performance of various models are discussed. The two-equation models appear
to perform better for separated flows especially in the recovering regions
downstream. Based on the above considerations, a two-equation (k-e) model was
formulated and utilized in the present study. Additionally, Baldwin-Lomax -"--

algebraic model 24 was used to perform the same computations for comparison
purposes. Both of these models are described below.

C. Baldwin-Lomax Algebraic Model

The algebraic eddy viscosity model used in this study is that developed
by Baldwin and Lomax. 24 It is a two-layer model in which an eddy viscosity is
calculated for an inner and an outer region.

T = (IT)inner y 4 Ycrossover

"T = (Touter y > Ycrossover

where y is the normal distance from the wall and Ycrossover is the smallest

value of y at which values from the inner and outer formulas are equal. The
inner region is based on the Prandtl-Van Driest formulation

(PT)inner =pj2u 11

where

+ PwY W u T

£ =c y[1 - exp(- y+/A+)] , y- w-

and clm is the magnitude of vorticity given by

[ u av) 2 + a3v aw)2  (aw au ) 2 1/2"I'"I : [ ay ax 3 +a a ,3•

39. J. G. Marvin, "Turbulence Modeling for Computational Aerodynamics," AIAA

Paper No. 82-0164, January 1982. % J
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where C is taken equal to 0.09. Some of the currently available two-equation

models are the Jones-Launder,4  Ng-Spalding, 10  Saffman-Wilcox, 32 Wilcox-
Traci 33 and Wilcox-Rubesin 34 models. The Jones-Launder (k-e) and Wilcox-
Rubesin (k - w2) models are the most popular of these models. Several
researchers have made computations using these turbulence models and compared
the calculated results with experimental data. However, the comparisons have
not revealed any of the models as definitely superior over the others.

B. Reynolds Stress Models

These are models which do not assume that the turbulent shearing stress
is proportional to the rate of mean strain i.e.,

- p u'v * T - " (10)

Transport equations are developed for all the components of the Reynolds
stress tensor. Such modeling requires the solution of three or more partial
differential equations. The Reynolds stress model proposed by Daly and B
Harlow 35 is a good example which requires the simultaneous solution of five
transport equations. To date these models have been used largely as turbu-
lence research tools. 36 Recently, these models were applied to compute the
incompressible flow in a duct 37 and to simulate the near-wake flow of a flat
plate. 38

32. P. G. Saffan and D. C. Wilcox, "Turbulence Model Predictions for Turbu-
lent Boundary Layers, " AIAA Journal, Vol. 12, No. 4, 1974.

33. D. C. Wilcox and R. M. Traci, "A Complete Model of Turbulence, " AIAA
Paper No. 76-351, 1976.

34. D. C. Wilcox and M. W. Rubesin, "Progress in Turbulence Modeling for
Complex Flow Fields Including Effects of Compressibility," NASA TP-1517,
1980.

35. B. J. Daly and F. H. Harlow, "Transport Equations in Turbulence, " Physics
of Fluids, No. 13, p. 2634, 1970.

36. B. E. Launder, G. J. Reece, and W. Rodi, "Progress in the Development of
Reynolds Stress Closure, " J. Fluid Mechanics, Vol. 68, 1975.

37. V. Reitman, M. Israeli, c d M. Wolfshtein, 'Wumeical Solution of the
Reynolds Stress Equations in a Developing Duct Flow, " AIAA Paper No. 83-
1883, July 1983.

38. A Sugavanam, 'Wear-Wake Computations with Reynolds Stress Models," AIAA
Paper No. 83-1696, July 1983.
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PT pk1 2  (7)

and UT no longer becomes zero when - = 0. Other one-equation models have"T ay
been suggested, the most notable one being the one used by Bradshaw, et al. 31

The turbulence energy equation is used but the form of modeling of the turbu-
lent transport terms deviate somewhat from the one described above.

3. Two-Equation Models: In one-equation models, the length scale is
evaluated by an algebraic expression dependent upon only the local flow param-
eters. Researchers in turbulent flow have long felt that the length scale in
turbulence models should also depend on the upstream history of the flow and
not just the local flow conditions. An obvious way to provide such a depen-
dence of I on the flow is to develop a partial differential equation for the
transport of t. This then is the main motivation behind the two-equation
models.

The two-equation models involve an additional partial differential
equation which in effect provides the turbulence length scale. Researchers
have experienced better success by solving a transport equation for a variable
related to the turbulence length scale rather than the length scale itself.4

The other transport equation used is for turbulent kinetic energy and is the
same one used in one-equation models.

One of the most popular two-equation models is the k-c model of Jones
and Launder.4'5  Here e is a turbulent dissipation rate and is assumed to be
related to other model parameters:

k3"2  (8)

The turbulent eddy viscosity is related to e as:

UT = C - (9)

31. P. Bradshaw, D. H. Ferris, and N. P. Atwell, "Calculation of Boundary
Layer Development Using the Turbulent Energy Equation," Journal of Fluid
Mechanics, No. 28, p. 593, 1967.
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I

X = Ky ; ..41. (4)

It is well known that the turbulence must be damped out very near the
wall in the viscous sublayer. Van Driest 2 9 proposed an exponential damping
factor as suggested by analogy with the way in which velocity fluctuations are
observed to decay near an oscillating flat plate in laminar flow. This mixing
length proposal gives,

x Ky - y )./2 (5)'

For flows with heat transfer a simple model can similarly be developed for the
apparent turbulent conductivity. These simple models have been modified and
used with considerable success to compute a relatively wide range of turbulent
flows. 10'24,30

2. One-Equation Models. Although the simple algebraic model works
remarkably well with a range of flow situations, it has the shortcoming of
predicting T as zero whenever -u = 0. This is not true under all conditions.

For example, at the center line of a pipe u = 0 but "T is not. This

deficiency can he corrected; but the applicability of the algebraic models is
limited to near-equilibrium flows. Most of the flows in the real world
include regions which are far from equilibrium. All these factors provide
motivation for considering other interpretations for PT and require the
application of more advanced turbulence models.

One-equation models are models which require the solution of a trans-
port partial differential equation for the turbulent velocity scale to evalu-
ate the Reynolds stress. The length scale, X is still specified algebraical-
ly. The turbulent velocity scale VT is written as the square root of the

turbulent kinetic energy k defined as:

k = (u'2 + v,2 + w 2) (6)

and the transport equation developed for k is usually used. Thus, u'T can be
written as:

I

29. E. R. Van Driest, "On Turbu lent Flow Near a Wall," Journal of the Aero-
nautical Sciences, Vol. 23, No. 11, November 2956.

30. W. C. Reynolds, "Computation of Turbulent Flows, " Ann. Rev. Fluid Mech.,
Vol. 8, 1976, pp. 183-208.
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Reynolds-averaged Navier-Stokes equations are used in this study. The infor-
mation lost in the averaging process is supplied, in an approximate fashion,
by a turbulence model.

Various turbulence models have been proposed over the years ranging from
simple algebraic eddy-viscosity formulations to sophisticated Reynolds stress-
equations models. Most models can be categorized as either a turbulent eddy
viscosity model or a Reynolds stress model. For simplicity the models are
described as applied to boundary layer flows. 7.'

A. Turbulent Eddy Viscosity Models

This class of model is based on a concept originally advanced by
Boussinesq in 1877. The assumption is that the turbulent shearing stress can

be related to the rate of mean strain through an apparent turbulent viscosity:

-P v' = -T a (1)

Models of this type can be quite simple or complex depending on how 1T is

related to other flow variables. A brief description of some turbulent vis-
cosity concepts is given below in increasing order of complexity.

1. Zero-Equation (Algebraic) Models. One of the most successful simple
model was suggested by Prandtl in 1925:

p92 fu (2)

where x is a mixing length, a characteristic length scale of turbulence. An
excellent explanation of the origin of the model is given by Launder and
Spalding (see Bibliography) who presented it in a form analogous to that for
the molecular viscosity as given by kinetic theory of gases. As a result of

this analog, 2- can be interpreted as a characteristic velocity of turbu-

lenco, VT; and X can be regarded as a mean free path for collision of globules

of tljid. Thus, uT can be thought of as:

=PVTL. (3)
IT .- ".-'

The mixing length £ is specified as an algebraic function of local flow param-
eters in the simple models. Prandtl observed that the mixing length is pro-
portional to the transverse distance i.e.,
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of computing such complex flows on various geometric shapes are available. A
strong need, however, exists for a general turbulence model that can be used
to compute such complex flow fields of practical interest. The two-equation
turbulence model has less empiricism and wider applicability to a class of
complex fluid problems than the algebraic model. The extension of the Navier-
Stokes algorithm to this model would thus be an important advance. The objec-
tive of the present research, therefore, is to incorporate into a time
dependent, thin-layer Navier-Stokes code, a two-equation turbulence model
which uses the same implicit algorithm and generalized geometry formulation.

Numerical computations are made of two transonic flows (i) attached flow
over an axisymmetric projectile and (ii) separated turbulent flow over an axi-
symmetric bump model. Computations are also made for the same flow situations
using the zero-equation eddy viscosity turbulence model. Both turbulence
models are assessed by comparing calculated values of wall pressure distri-
bution and profiles of velocity, turbulent kinetic energy and Reynolds shear
stress with experimental measurements.

II. TURBULENCE MODELS

The computation of an entire turbulent flow field by direct numerical p
solution of the time dependent conservation equations is, at present, impossi-
ble due to the extremely fine grid-spacing required to resolve the smallest
significant eddies of the flow and the extremely small allowable time-step.
This approach to turbulent flow computations requires computers with storage
and speed capabilities far beyond those currently available. The usual point
of departure in practical applications is an averaged version of the conserva-
tion equations. The averaging process introduces new unknown variables, which
must be modeled in terms of other quantities. Averaged equations may be
derived through time- or mass-weighted averaging at flow field points or by
averaging the conservation equations over space. The latter technique, known
as "subgrid modelling" or "large eddy simulation," is prohibitively expensive
for solving practical problems.

Large eddy simulation is a powerful research too12 6 - 28 and falls between
the direct simulation of turbulent flows and Reynolds-averaged Navier-Stokes
calculations both in cost and accuracy. Because of the cost involved, this
technique is not used for engineering flow predictions at present. This kind
of approach will ultimately provide more understanding and will eventually i
guide the development of models that include more physical information.

26. A. Leonard, "Panel Discussion: Large Eddy Simulation Techniques, AIAA p
Paper No. 83-1878-CP, July 1983.

27. K. Dang, "Evaluation of Simple Subgrid-Scale Models for the Numerical
Si.,uation of Homogeneous sotropic and Anisotropic Turbulence, " AIAA
Paper No. 83-1692, July 1983.

28. P. Main, "Probing Turbulence via Large Eddy Simulation," AIAA Paper No.
84-0174, January 1984.
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modified by the explicit implicit-characteristic algorithm of Reference 19.
Viegas et al1 7 have used this calculation procedure to study various shock-
wave turbulent boundary-layer interaction flows bot at transonic and super-
sonic speeds.

Recently, codes have been developed 20- 22 which solve the compressible set
of Reynolds-averaged thin-layer Navier-Stokes equations for high Reynolds

*" number flows. Parabolized Navier-Stokes 20 computational technique is used for
the computation of supersonic flows whereas the unsteady Navier-Stokes
codes2 1'22 can be used for both transonic and supersonic computations. The
thin-layer Navier-Stokes equations are cast in strong conservation law form.
The equation formulation allows for arbitrary body geometries and is solved
using an implicit, approximately factored, finite difference scheme by Beam
and Warming. 2 3  The turbulence model used is an algebraic two layer eddy vis-
cosity model reported by Baldwin and Lomax.24 Such simple models contain a
large amount of empiricism which tends to make these models inadequate for
complex turbulent flows. 25

Real world problems such as the transonic turbulent flow over a projec-
tile are complex due to the presence of shock waves. The flow field is char-
acterized by shock wave-boundary layer, viscous-inviscid interactions, and the
large separated flow region behind the projectile base. It is advantageous to
use the thin-layer Navier-Stokes computational technique described above in
that it considers these interactions in a fully coupled manner. As the capa-
bility for computing more complex flows expands, the need to develop a more
general turbulence model also expands. Navier-Stokes codes that are capable

19. R. W. MacCormack, "An Efficient Numerical Method for Solving the Time-
Dependent Compressible Navier-Stokes Equations at High Reynolds Number,"
Computing in Applied Mechanics, AMD Vol. 18, ASME, 1976.

20. L. B. Schiff and J. L. Steger, 'Wurneical Simulation of Steady Supersonic
Viscous Flow, " AIAA Paper No. 79-0130, January 1979.

21. J. L. Steger, "Inplicit Finite Difference Simulation of Flow About Arbi-
trary Geometries with Application to Airfoils, " AIAA Journal, Vol. 16,
No. 4, July 1978, pp. 679-686.

22. '. H. Pulliam and J. L. Steger, "On Implicit Finite-Difference Simula-
tions of Three-DimensionaZ Flow, " AIAA Journal, Vol. 18, No. 2, February
1980, pp. 159-167.

23. R. Beam and R. F. Warming, "An Implicit Factored Scheme for the Compres-

sible Navier-Stokes Equations," AIAA Paper No. 77-645, June 1977.

24. B. S. Baldwin and H. Lomax, "Thin Layer Approximation and Algebraic Model
for Separated Turbulent Flows, " AIAA Paper No. 78-257, January 1978.

25. M. Visbal and D. Knight, "Evaluation of the Baldwin-Lomax Turbulence
Model for Two-Dimensional Shock Wave Boundary Layer Interactions," AIAA
Paper No. 83-1697, July 1983.
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turbulent boundary layers by Harris i  and Cebeci et a11 3 among others.
Patankar and Spalding i° obtained a finite-difference scheme by expressing each
term in the governing equations as an integrated average over a small control
volume defined by the grid. Their general calculation procedure was applied
to a wide variety of flows with considerable success. The Thomas algorithm
for solving the tridiagonal system of equations is usually employed. The
Keller box method 14 has been adapted to turbulent boundary layer calculations
by Keller and Cebeci.

15

The method developed by Keller for parabolic problems is second order
accurate on an arbitrary nonuniform grid network. The box-scheme, being an
implicit method, is stable with no restrictions on the grid size in the
streamwise direction. This method requires the solution of ablock-tridiag-
onal system of equations. Blottner 14 proposed a Crank-Nicolson scheme using
a variable grid and claims that his scheme has the same accuracy as the Keller
box scheme and is more efficient for parabolic equations. The calculation
methods described thus far are applicable to boundary layer flows.

For many flow situations where shock wave turbulent boundary layer inter-
actions are important, boundary layer techniques are inadequate. For such
complex flows the differential equations used to describe the mean flom are
the Reynold-averaged Navier-Stokes equations. Excellent reviews of the
closure concepts for these equations can be found in the Bibliography. The
mean flow and the turbulence field equations are solved simultaneously in
References 15-17. The numerical procedure used is the basic second-order,
predictor-corrector, finite-difference, time-splitting method of McCormack,

18

13. T. Cebeci, A. M. 0. Smith, and G. Mosinskis, "Calculation of Compressible
4ldiabatic Turbulent Boundary Layers, " AIAA Journal, Vol. 8, November
-,?70, pp. 1974-1982.

14. G. G. Blottner, 'Variable Grid Scheme Applied to Turbulent Boundary
a ,1ers," Computer Methods in Applied Mechanics and Engineering, 4, 1974,
,p. 179-194.

15. T. J. Coakley and J. R. Viegas, "Turbulence Modeling of Shock Separated
Poundary-Layer Flows," Paper presented at the Symposium on Turbulent

hfar Flows, University Park, PA, April 1977.

16. -1. R. Viegas and T. J. Coakley, "Nuerical Investigation of Turbulence
'lodels for Shock-Separated Boundary-Layer Flows, " AIAA Journal, Vol. 16,

o. 4, April 1978.

17. R B. Viegae and C. C. Horntman, "Comparison of MuZtiequation Turbulence
I,, els for Several Shock Boundary-Layer rnteraction Flows, " AIAA Journal,

:'-Y. 17, August 1979, pp. 811-820.

18. :'. W. MacCormack, '?umericaZ Solution of the Interaction of a Shock Wave
a Laminar Boundary Layer, " Lecture Notes in Physics, Vol. 8,

-ringer-Verlag, 7971, pp. 157-163.
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.- It is added to balance the molecular diffusion term in a manner exactly
analogousto the added term in the k equation. The exponential ensures that

*, this term decays rapidly and its effect is felt only close to the wall.

Additionally, the definition of C has been modified to include the damp-

- ing effect due to the presence of the solid wai in the manner of Van Driest's
proposal.

C P= 0.09 [1 - exp (- 0.01 Y~) + (23)

In the Jones-Launder model this coefficient is defined in terms of the turbu-
lent Reynolds number. With these modifications the k-e model now takes the
following form:

DR a ) +T k + 'T u ( 2 _k 2 (24)
P y [ ( +

k ) 14 T -- )2- p  y

k a k ay y y 2

+ 2 C

P = [" 9) -@- lT--(y
+ j.

c 2 P - - 2w 2 exp ("- y ) (25)~y2

C k
2

PT = C

where C is given by Equation (23) and

c I = 1.44

c2 = 1.92 [1 - 0.3 exp (-R2)] , R k2

A more general form of the k-a equations than described above is given by
Launder, Sharma and Pridden6 as

26
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_k a P~t au. au. Bu.iOk k+ ~j ~ ~+ + a.

(26)

11

De a li c1 l C au1 a(u. + au.)
P-~ + ) + jP -y7- x ax.

(27)

a2u.
-C 2 P + C3VI~t (ax k ax.

where k is the turbulent kinetic energy, e is the turbulent dissipation rate

and P is the turbulent viscosity and are given as,

k -1(u' 2 + Vo2 + W12)

E: i2 2v A 2(28)

k

U C pC

The empirical coefficients in Equations (26)-(28) are given below:

CI 0.09 exp [-3.4/(1 + 0. O2Rt )2]

t V

C, 1.44

27



c2  1.92 [1 - 0.3 exp (- Rt 2)] (29)

c3 = 2.0

ak = 1.0

a = 1.3.E

Chien's modifications are included and the model used in this study is as
follows:

Dk a [lt 3k. aui  aui  auj

(30)

- p -
21 k _

2

De a Pt ae, C aui aui +a1ui

P(- + V) + C a - uit . (-3- a-)

(31)

+-E 2 ,, e-y 12-
-c 2 p k- 2/ y2 .

where Yn is the distance normal to the surface and the empirical coefficients

given :)y Equation (23) and (29).

11. NAVIER-STOKES COMPUTATIONAL TECHNIQUE

A. Governing Equations

The three dimensional thin-layer Navier-Stokes equations are presented
and are then reduced to the axisymmetric formulation. To enhance numerical
accuracy and efficiency, coordinate mappings of the governing equations are
employed. This brings the body surface onto a coordinate surface (body-fitted
system) and clusters grid points in flow field regions where dependent vari-
ables are expected to undergo rapid changes (boundary layer for example). In
the transformed plane, uniform discretization formulas and well-ordered

28
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interior grid point solution algorithms can be used. Related work using
transformed equations in flow field applications can be found in References
21, 44-46.

The governing equations are transformed using the following general
coordinate transformations:

= (x,y,z,t)

n = n(x,y,z,t)

= (x,y,z,t)

*=t

The equations are written in strong conservation law form and the transforma-
tion retains this form.47  The resulting transformed three dimensional thin-
layer Navier-Stokes equations can be written in nondimensional form as

a Rq+aE+ aF + a =Re-a (32)

where
p pU.

qJpu puU + xp'q _ Vj-1 PV +Cp
pv :=J pvU

y
pw pwU + Ezp

e (e+p)U - p

44. G. S. Deiwert, "Numerical Simulation of High Reynolds Number Transonic
Flows," AIAA Journal Vol. 13, No. 10, October 1975, pp. 1354-1359.

45. P. Kutler., S. R. Chakravarthy, and C. K. Lombard, "Supersonic Flow Over
Ablated Nosetips Using an Unsteady Implicit Numerical Procedure, " AIAA
Paper 78-213, 1978.

46. R. W. MacCornack and A. J. Paullay, "The Influence of the Computational
Mesh on Accuracy for Initial Value Problems with Discontinuous or Non-
unique Solutions," Computers and Fluids, Vol. 2, 1974, pp. 339-361.

47. H. Viviand, "Conservative Forms of Gas Dynamic Equations," La Recherche
Aerospatile, No. 1, January-February 1974, pp. 65-68.
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P

pV pW

puV + nx puW + xp

F= J -  pvV + nyp G J- pvW + yP p

pwV + nzp pwW + p

(e+p)V - tp (e+p)W-

P
0

2 2 2
(4x + y +4 z)V + (I/3)( x u + 4 y V + z W C y

2 +- 2 +2 2, +(/3 v+

=- Utc 2+ 2y+ C2 w  + (u/3)(; U + y v + zW )c .

,2 2 +2,1.p( v+ + Kpr-l1(1_ W-l(a 2 )

+ (/)(xu+ yV+ CzW) ( xy Y+ yV +; zW

The velocities

V =n t + nxU + nyV + nz W (33)."'".,-

W = t +  x u +  yV + zw

+ :

represent the contravarient velocity components .. ..

The Cartesian velocity components (u,v,w) are retained as the dependent
variables and are non-dimensionalized with respect to a. (the free stream
speed of sound). Pressure is defined as

p (y 1) 1[e - .5p(u 2 + v2  W2 (34) ""(

where y is the ratio of specific heats, p is the density referenced to p, and-i]..
e is the total energy referenced to p a 2 The additional parameters are (K) .-.. '
the coefficient of thermal conductivity, Wu the dynamic viscosity, (Re) the -.
Reynolds number, (Pr) the Prandtl number, and (X) which through the Stokes
hypothesis is (-2/3)l.

30 .. TTi

p

U = + ~u+ ~v+ P
t x y

" ' " " ' • " .. . . . ., 'V .. . . + .. . u 4 -n V "+ "-l w " (33)" - - - " " - " ' ' " '"'' '' "



The metric terms of Equation (32) are defined from

x= J(y n - Y4 zn) nx= J(zEy - tzd

y =J (z x -xqz) ny J(X z 4 -x 4 z d

z J(xny - YnX4) nz  J(y~x x y ) .. .,

(35)

x J(YZn - ZY Et - -Ty XTz

y = J(X n Z - xcz n )  Tit = - x Tn X - y n iy - z TniZ

4Z = J(xYn -y CXn) 4t = - Xx - YTy - z

and

-l
J = E YnZ + x ;Y&Z + XnYZ - x y zn - XnY Z E

where J is the Jacobian of the transformation. For the computation of turbu-
lent flows, P and K comprise of their molecular and turbulent counterparts.
The turbulent contribution UT and KT are supplied through an eddy viscosity

hypothesis described in Section II.

The "thin-layer" approximation2 1',2 '2 4 is used here and is valid for high
Reynolds number flows. In high Reynolds number flows one usually has only
enough grid points to resolve viscous terms in a thin layer near the body sur-
face. Essentially, all the viscous terms in the coordinate directions (here
taken as and n) along the body surface are neglected while terms in the C or
the near normal direction to the body are retained. This approximation is
used because, due to computer speed and storage limitations, fine grid spacing
can only be provided in one coordinate direction (usually taken as the near
normal direction) and the grid spacing available in the other two directions
is usually too coarse to resolve the viscous terms.

The three dimensional set of equations are then reduced to obtain the
azimuthal-invariant or n-invariant equations48 by making use of two restric-
tions: (1) all body geometries are of an axisymmetric type; (2) the state

48. C. J. Nietubicz, T. H. Pulliam, and J. L. Steger, 'WumericaZ Solution of
the Azimuthal-Invariant Thin-Layer Navier-Stokes Equations," U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02227, March 1980. (AD A085716) (Also see AIAA Journal, Vol. 18, No.
12, December 1980.)
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variables and the contravariant velocities do not vary in the azimuthal direc-
tion. Here n is used for the azimuthal coordinate. A sketch of a typical

axisymmetric body and the coordinate system is shown in Figure 1. The a F -o

term of Equation (32) is thus reduced to a source term of the n-invariant
equations. The resulting thin-layer n-invariant or axisymmetric Navier-Stokes
equations are then written as

q +a E +a G +H Re a S(36)

where

0
0

j- 1  pV {R E(U -t) + R; (W -

- pV R(V - nt ) - P/R

and q, E, G and S are as defined in Equation (32). The metric terms of Equa-
tion (35) are modified as:

x =J RR nx =0

y =0 ny =I/R

z = -Rx n = 0
ZZ(37) -

x JRR 4t = JR(x RX " x R

y 0 nt = 0

z= JRx E JR(x T - RTxE)

with

j-1= R(xR - R.

and
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R z (see Figure 1).

Equation (36) contains only two spatial derivatives but does retain all three
momentum equations thus allowing a degree of generality over the standard axi-
symmetric equations. In particular, the circumferential velocity is not
assumed to be zero. This allows computations for spinning projectiles or
swirl flow to be accomplished. The n-invariant equations have been used in a
number of flow field applications 4 8- 5 3 and is utilized in the present study.

B. Numerical Method

An implicit approximate factorization finite-difference scheme in delta
form is used as described by Beam and Warming. 2 3  An implicit method was
chosen because it permits a time step much greater than that allowedby explic-
it schemes. For problems in which the transient solution is of no interest,
this offers the possible advantage of being able to reach the steady state
solution faster than existing explicit schemes.

The Beam-Warming implicit algorithm has been used in various applica-
tions. 2 0- 2 4'4 8-5 3 The algorithm can be first or second order accurate in time
and second or fourth order accurate in space. The equations are factored
(spatially split) which reduces the solution process to one-dimensional prob-
lems at a given time level. Central difference operators are employed and
the algorithm produces block tridiagonal systems for each space coordinate.
The main computational work is contained in the solution of these block tri-
diagonal systems of equations.

49. C. J. Nietubicz, 'Wavier-Stokes Computations for Conventional and Hollow
Projectile Shapes at Transonic Velocities," U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03184, July 1982.
(AD A116866) (A lso see AIAA Paper No. 81-1262, June 1981.)

50. J. Sahu, C. J. Nietubicz, and J. L. Steger, 'WumericaZ Computation of
Base Flow for a Projectile at Transonic Speeds, " U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02495,
June 1983. (AD A130293) (Also see AIAA Paper No. 82-1358, August 1982.)

•51. J. Sahu, C. J. Nietubicz, and J. L. Steger, 'Wavier-Stokes Computations
of Projectile Base Flow with and without Base Injection," U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02532, November 1983. (AD A135783) (Also see AIAA Paper No. 83-0224,
January Z983.)

52 . 7. S. Diewert, "A Computational Investigation of Supersonic Axisymmetric
Flow Over, Roattails Containing a Centered Propulsive Jet, " AIAA Paper No.
83-0462, 10-13 January 1983.

53. J. Sahu and C. ,T. Nietubicz, 'Wumerical Computation of Base Flow for a
Missile in the Presence of a Centered Jet," AIAA Paper No. 84-0527,
January 7984.
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The resulting finite difference equations, written in delta form, are

(I + hAn - A J-I V AJ)(I + h6Cn - AI- IV A J

hRe-16 J -Mnj) x (qn+ l - qn) = -At( + a n (38)

I_ Re-16 Sn) _ At~n - AEJ-[(V A )2 + (V A )2 ]jqn.

Here h At because only first order accuracy in the time differencing is p
needed for the steady state flows which are considered here. This choice
corresponds to the Euler implicit time differenciny. The 6's represent
central difference operators, A and V are forward and backward difference

3E aE
operators respectively. The Jacobian matrices A C C along with the

aq aq
coefficient matrix M obtained from the local time linearization of S are
described in detail in Reference 22. Fourth order explicit (AE) and implicit

(A,) numerical dissipation terms are incorporated into the differencing scheme

to damp high frequency growth and thus to control the nonlinear instabilities.
A typical range for the smoothing coefficients is AE = (1 to 5) At with A, :
3A . Details of the algorithm and the finite difference equations as they

apply to turbulence field equations will be discussed in the next Section.

C. Initial and Boundary Conditions

Free stream values are used as the initial conditions in the entire flow

field domain of interest. Unknown values of q on the boundaries are updated

A n.1 Anexplicitly and Aq = q _ q is set to zero, leading to a first order error
in time at the boundaries.

The updated values of q are obtained along the body surface by linear -

extrapolation of p, U and V in inviscid flow. In viscous flow pis extrapolat-
ed and U = V = 0. In either case W = 0 and values of u, v and w are obtained
from the following relation.

I

= 0 x~z Vz~x] nt (39)

w-ny x  0 n y x ]
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For an axisymmetric body spinning with angular velocity w, one would impose
the condition V = Rw on the body surface. Pressure on the body surface is
obtained by numerically integrating the following equation.

2 + / = + 2+ ( 2
Pn x Z xx +zZ + Z 4

p[a Ct + U3Ta x + v(JRx ) + wa T(JRx )] (40)

- pU(xU + zW ) + pV[Jx R2 (V - nt)]

Here Pn is the normal pressure gradient at the body surface. Equation (40)

results by combining the three transformed momentum equations.

The axis singularity is handled as in Reference 22 where flow variables
are not required at the axis due to the fact that the required flux vectors
are zero along the singularity. At the far field boundary free stream values
are specified. At the downstream boundary, first-order extrapolation is used
for M c 1 while extrapolation and the condition that pressure is fixed at P
are used for M < 1.

IV. SOLUTION OF k-s EQUATIONS

A. Turbulence Field Equations

The k-s equations used in this study can be written from Section II as,

Dk a 1t k ;ui aui au.

j kJ
(41)

pe 211
y2n

De a it 36 as aui  au. au.
+ Cli t k (- + -. )

P W + P) a 1 .

(42)"-

C2P 2 21 e-y +/2
- c 2 p - -- - 2p --- (4?

k2 ,

Yn
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vhere Yn is the distance normal to the surface. The turbulent kinetic energy,

and the turbulent dissipation rate, c are given as

k = (U-2 + v-2 + w 2) (43)

au -. k/
= (3LJ)2- 2v (3k )2  (44)

and the turbulent viscosity is related to k and e by,

k
2

lit = C (45)

The empirical coefficients in Equations (41), (42) and (45) are given below:

C 0.09 [1 - exp (-0 . )]y)]

R k 2  

-

Rt V

c= 1.44

c2 = 1.92 [1 - 0.3 exp (- Rt2)] (46)

c3 = 2.0

Ok =1.0

a = 1.3.

Expanding and using the continuity equation, we can write Equations (41)
and (42) in conservation form as

3
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aq 3Et 3Ft  3Gt
at + + + = St (47)

where

qt E ' F
p1 PU vc

(48)

Gt = , St = Sk]Fpwk 1

and

ut _ k aui  aui  ujk

Sk = aX -t + t) + (-au + a - -2-n (49)
' k Yn

au. au. au.
.- 1 -1 P + c1p C . +  3)

(50)

- c 2  2 - 2 .-- e
2

Yn

For simplicity the subscript 't' in Equation (47) is omitted and the variables
without the subscript will be used throughout this Section. Thus, Equation
(47) can be written as

a E aF aG S (51)
at ax ay z (5"

B. Transformation into Generalized Coordinates

Using the transformation
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E c(x,y,z,t)

n : n(x,y,z,t) (52)
: 4(x,y,z,t)

uation (51) can be written in transformed coordinates while still retaining
e conservation form4 7 as

+ _ + aG (53)

iere

Pk PkU] 1pkV1
q [,] P [eu Iv

1rpkW 'kS ][pew] S C ...

i d 
--' -

I'I

a 1l i+ P), 2 +2 'ik t [2 2 +2)
k -T k X x y - x y )

2 2 2 +P 2p k
(u + + W 0 + (4xu + + w )2 F _ 2

Yn

a 1 (t 2 2 2 a + t [ 2 2 2S = a-[j& i )( x +  y + ) + C -- [( x + + z)

(u + V2 w ) + ( U + V + 4 w )2] C2 R - 2 R eY

Yn
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rhe velocities U, V and W are the contravariant velocities defined in Equation
33) and J is the Jacobian of the transformation. The thin-layer approxima-

z.ion described previously is used here.

Based on the assumptions for axisyminetric flow described in the previous
:hapter, the n derivative term in Equation (53) drops out and the axisymmetric
set of turbulence field equations can be written in non-dimensional form as

+ 3~E + (G Sj (54)

[PEIJ

pewJ

Re ;2 + 2 1

and

Re- Wt 2~ 42 2 2 2 2
i [(x 4y + )(u4 + v4 + w)

+ (4 u + 4v + 4w) Re j--

Re y z -2~- e

R-i 1 ' 2 +4 2X 2~ +v 2 + W2)

C,- -j ex /2

x y zJ k T 2L + 4u +~v w )] -c 2-~~- Re1 2p



rictly based on local information and results in such drastic change in
havi or.

The turbulent kinetic energy profiles at the same selected stations are
own in Figure 30. The profiles at two stations upstream of the shock are
own in Figures 30(a) and (b) and compare well with experimental measure-
nts. Figures 30(c) through (h) show the profiles in the separated region.
e peaks are well predicted by the two-equation k-E model although the loca-
on of the peaks are slightly underpredicted. Comparison of the profiles
ry close to the wall indicate poor predictions. In the redeveloping flow
gion after reattachment the computed profiles with the k-e model are in
cellent agreement with the experimental data. This is where we have seen
,od agreement in the mean velocity profiles as well.

The location of, and variation in, the maximum turbulent shear stress are
iown in Figure 31 and 32 respectively. As shown in Figure 31 the locations
,e well predicted by the k-E model and are in close agreement with the exper-
iental observations except near x/c = 1, i.e., where the aft end of the bump
; affixed to the cylinder. This is in the separated region and the disagree-
!nt is even more clear in the variation of the maximum turbulent shear stress
iown in Figure 32. Additionally, Figure 31 clearly shows the peak of the
-ofiles shifting away from the wall from x/c = .5 to 1.

The location of the maximum turbulent kinetic energy and its streamwise
iriation are shown in Figures 33 and 34, respectively. As seen in Figure 33
ie location of the peaks further shift from the wall from x/c = .5 to 1.0 and
ien falls off in the same way observed by the experimental data. Although
ie trend is the same, the calculations underpredict the location of the peaks
;igure 33) and overpredict the values of the maximum turbulent kinetic
iergies (Figure 34). It is also clear from these figures that the k-C model
-edictions are in good agreement with the experimental data in the redevelop-
ig region (x/c = 1.25).

VI. CONCLUDING REMARKS

Objectives

The objectives of the reported research were:

(1) formulate the k-c turbulence model in general spatial coordinates
id incorporate it into a compressible, axisymmetric, thin-layer Navier-Stokes
)de,

(2) apply the resulting solver to two transonic flows for which experi-
.ntal data are available,

(i) an ogive-cylinder-boattail projectile configuration at M.0 .94
id .97

(ii) an axisymmetric bump configuration at M = .875 which involves
)cal shock induces separation
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ence of a strong shock wave on the model. The pocket of supersonic flow
on (M > 1) can also be seen. Figure 23 shows the pressure contours in the
field near the bump. As can be seen the flow over the front portion of

model expands. The shock wave can be clearly seen to exist on the aft
ion of the circular-arc bump. These qualitative features are predicted by
i the algebraic and k-c models.

Figure 24 shows the velocity vectors over the aft end of the bump obtain-
qith the algebraic model. Flow separates and the reverse flow region can
seen in this figure. To show the separation bubble more clearly stream
:tion contours are plotted in Figure 25. The two-equation k-c model pre-
-ion is shown in Figure 26. This model predicts a smaller separated
ion. The two-equation models generally predict poorly in the separated
ion and do well in the redeveloping flow region after reattachment. 39 This
it will be discussed in a later section.

Figure 27 is a plot of the surface pressure distribution as a function of
longitudinal position. The surface pressure is referenced to the total

ssure. The longitudinal position in this plot, and plots to follow, is
erenced to the leading edge of the bump excluding the fairing i.e., the
ersecting point of the arc of the bump with the cylinder (see Figure 19).
puted results are obtained with both turbulence models and are compared
h experiment. The position of the shock wave is well predicted by both the
els; however there is a small disagreement in the region downstream of the
ck. The largest discrepancy is about 15% and could partly be due to the
ge grid spacings used in the redeveloping flow region.

Development of the mean velocity, turbulent shear stress and turbulent
etic energy profiles over the aft portion and just downstream of the bump
shown in Figures 28, 29 and 30 respectively. The mean velocity profiles
shown in Figures 28(a) - 28(f). Flow separation occurs as shown in Figure

a). Figures 28(a) through 28(c) show the mean velocity profiles in the
arated region. As pointed out earlier, the k-c model predicts a thin
ersed flow region. It is especially true at the stations selected in the
arated region. Elsewhere in the separated region, however, it is not
ignificant (see Figure 26). Although a thicker separated reqion ispredict-
by the algebraic model, the profiles are poorly predicted by both the

els. Away from the wall, k-c model calculations show better agreement with
experimental data. Poor predictions for both turbulence models can be

erved in Figure 28(d) at the station just upstream of reattachment. The
evelopment of the flow after reattachment is shown in Figures 28(e) and
f). Here the k-c model produced a solution that more closely represents
experimental data than did the algebraic model.

Figure 29 shows the turbulent shear stress at selected streamwise sta-
ns. As evident from this figure, the k-c model predicts the turbulent
ar stress profiles which are in close qualitative agreement with the
erimental data. The peaks are not as well predicted however. Additional-
the location of the peaks shifts further away from the wall ,just as deter-

ed experimentally and k-c model successfully predicts the rate of peak
placement as shown in Figures 29(a) through 29 (g). The algebraic model on
other hand predicts sharp increase or decrease in the turbulent shear

ess as seen in Figure 29(c)-(e) and 29(f)-(h). It grossly underpredicts
turbulent shear stress in Figures 29(d) and 29 (g). The algebraic model is
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Bachalo and Johnson. 61 ' 62  The data was obtained in the NASA Ames 2x2-Foot
Transonic Wind Tunnel using a LDV technique. Calculated results using both
the algebraic and the k-e models are compared with these experimental data.

A schematic diagram of the model and its associated flow field is shown
in Figure 19. The model consists of an annular circular-arc bump affixed to a
thin-walled cylinder of outer diameter 15.2 cm. The bump has a thickness of
1.9 cm and a chord length of 20.3 cm. Its leading edge is joined to the
cylinder by a smooth circular arc of radius 18.3 cm that is tangent to the
cylinder at 3.33 cm upstream and to the bump at 2.05 cm downstream of the
intersection of the arc of the bump with the cylinder. In other words, a
fairing is used in the leading edge of the bump. The flow field contains a
separated region which is induced by a shock wave.

The computational mesh for this case was obtained using a hyperbolic grid
generation scheme. 6 3'6 4 The grid generated this way is orthogonal. The full
grid is shown in Figure 20 whereas Figure 21 shows an expanded view of the
grid near the bump model. Most of the grid points are clustered on the aft
portion and just downstream of the circular-arc bump in the flow direction.
The grid points in the normal direction were exponentially stretched away from
the wall. The first point was taken to be .00001D away from the model surface

which correspond to y+ of about 0.5. The number of grid points used was 78
and 40 in the longitudinal and normal directions, respectively.

The upstream boundary conditions were prescribed by uniform free stream
conditions. First order extrapolation was used at the downstream boundary.
The no slip boundary condition was used on the wall and free stream conditions
were used at the far field outer boundary. For the turbulence variables with
the k-e two-equation model, k and c were set to zero on the wall and at the
upstream boundary. Zero derivatives of k and e were used at the outer and
downstream boundaries.

Figures 22 and 23 show the qualitative features of the flow field near
the bump model. Figure 22 is a Mach contour plot and clearly indicates the

61. W. D. Bachalo and D. A. Johnson, "An Investigation of Transonic Turbulent
Boundary Layer Separation Generated on an Axisymmetric Flow Model," AIAA
Paper No. 79-1479, 1979.

62. D. A. Johnson, C. C. Horstman, and W. D. Bachalo, "Comparison Between
Experiment and Prediction for a Transonic Turbulent Separated Flow," AIAA
Journa_, Vol. 20, No. 6, June 1982, pp. 737-744.

63. J. 1. Steger and D. S. Chaussee, "Generation of Body Fitted Coordinates
Using Hyperbolic Partial Differential Equations," FSI Report 80-1, Flow
Simulations, Inc., Sunnyvale, CA, January 1980.

64. C. J. Nietubicz, K. R. Heavey, and J. L. Steger, "Grid Generation Tech-
niques for Projectile Configurations," ARO Report 82-3, Proceedings of
the 1982 Army NwnericaZ Analysis and Computers Conference.
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to those discussed previously for M = .94. The peak values occur at y+ 25.
k increases over the boattail corner (X/D = 5.05 to 5.36) and then decreases
over the boattail. The turbulent dissipation rate profiles are shown in
Figure 13. These profiles behave better than k profiles in the region outside
the edge of the boundary layer and drop off to small values without the
presence of any humps in the profiles in that region. As expected, the peaks

in e profiles occur closer to the wall (y+ 10) than those of the k profiles

(y 25).

Figures 14 and 15 show the turbulent eddy viscosity profiles obtained
with the algebraic model and the k-c model, respectively, and are plotted in
physical y coordinate. pt rises to its peak and then drops off sharply over a

very small distance from the surface. The magnitudes of pt at each of these

longitudinal stations differ in both the model predictions and are clearly
shown in the next Figure 16. Figure 16 is plotted in the law of the wall
coordinate and shows the variation of pt near the wall more clearly. The

profiles with k-c model have sharper peaks compared to those obtained with the
algebraic model. Algebraic model predicts sharp increase (X/D = 5.61 to 6.19)
and decrease (X/D = 5.05 to 5.36) in pt whereas k-c model predicts rather

gradual change since it takes into account the upstream effects. Comparison
of 1 t profiles at X/D = 5.36 and 5.61 shows poor agreement and comparison at

the other three stations shows good agreement. This kind of a disagreement is
local and may not have a large overall influence on the results.

Figure 17 shows the mean velocity profiles at the same longitudinal sta-
tions. There is very slight difference between the computed results obtained
with both turbulence models. Comparison of the calculated profiles have been
made with experimental data at X/D = 5.05, 5.36 and 5.61 and the comparison in
general shows good agreement. The slight difference in the computed results
and experimental measurements is for the X/D = 5.36 case. This profile is
only .06 calibers downstream of the boattail corner and is in the vicinity of
severe expansion. The experimental data was reduced using wall static pres-
sure measurements. The greater the distance from the wall,the more the veloc-
ity data may be in error. This is particularly true just downstream of the
expansion corner where the profile may extend through the expansion fan with
significantly varying static pressures. A small error in experimental
measurements thus could account for the slight difference. The computed and -

experimental surface pressure coefficient are again shown in Figure 18 and
compare favorably.

B. Separated Flow Over an Axisymmetric Bump

Numerical computations have been made for a transonic turbulent separated
flow over a bump model. All the computed results shown are for M = 0.875, a
0' and Re = 13.6 x 106/m. Experimental measurements of the mean flow quanti- -

ties as well as the turbulence variables for the same model have been made by
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corner and X/D 5.36 is just after the boattail corner. Because of the
severe expansion at the boattail junction, the turbulence kinetic energy is
increased by a factor of two between these stations. It then drops off on the
boattail as shown by the profiles at stations X/D =5.61 and 6.19. The humps-
in these profiles are believed to be the result of the interaction of the
shock and expansion waves with the turbulent boundary layer and occur outside

the edge of the boundary layer. The peaks in the k profiles occur at y+ 20
although the peak is moved slightly further away from the wall near the boat-
tail corner i.e., between X/D = 5.05 and 5.36. As shown in Figure 7 the
turbulence dissipation rate profiles show identical behavior for the same
stations with the exception that there are no humps present in the region out-
side the edge of the boundary layer. Additionally, the peaks now occur closer

to the wall at y +=10. This agrees with the observed behavior of the peaks
in Reference 41.

Turbulent eddy viscosities are found from k and e with the two-equation
model and algebraically using Baldwin and Lomax model. These are referenced
to the molecular viscosity p.~ and plotted in Figures 8 and 9 for the same
longitudinal positions discussed above. Figure 8 shows the Pt profiles
obtained with the algebraic model. The profiles have rather flat peaks and go
to zero outside the boundary layer. It drops off sharply in magnitude near
the boattail corner i.e., X/D = 5.05 to 5.36 and then rises sharply on the
boattail as seen by the profiles between X/D = 5.61 and 6.19. The algebraic
model is based on local information and such sharp increase or decrease in P
results. The pt profiles obtained with the k-E model on the other hand shows
gradual change in Pton the boattail as seen in Figure 9. The profiles have

sharper peaks and then fall off to values other than zero outside the edge of
the boundary layer. Although k and c profiles drop off to practically zero,
k2/c does not drop off from its peak value monotonically with increasing dis-
tance from the surface and results in non-zero pts. The mean flow gradients

outside the boundary layer are, however, exceedingly small and these p 's in
no way adversely affect the solution of the mean flow quantities.

Figure 10 shows the mean velocity profiles at the same selected stations.
Velocity profiles obtained with both turbulence models compare well at X/D-
3.42 and 6.19. Experimental data is available at the other three stations and
are used for comparison with the calculations. Both models predict almost the
same profile at X/D = 5.05 and comparison with experiment is good. Just down-
stream of the boattail corner i.e., at X/D = 5.36 and 5.61, comparison of the
k-E calculations with experiment are in better agreement than the algebraic
model predictions. Figure 11 is a plot of the surface pressure distribution
as a function of the longitudinal position over the projectile. The rapid
expansion at the ogive and boattail junctions is apparent. Computed results
obtained with both models are compared with experiment and the results are in
good agreement. A small improvement of the results with k-c model can be seen
on the boattail.

Results are now presented for another Mach number, M =.97 where strong
shock/boundary layer interactions occur. Figure 12 shows the turbulent
kinetic energy profiles at various longitudinal positions. These look similar
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Before performing the computations, the flow field domain of interest
must be discretized. The computational grid used for the numerical computa-
tions was obtained from a versatile grid generation program developed by
Steger, et al. 5 9  This program allows arbitrary grid point clustering thus
enabling grid points to be clustered near the body surface and is based on the
elliptic grid generation scheme advocated by Thompson, et al. 60  In this
method the grid in the physical plane is defined by the solution of a Laplace
or a Poisson equation and the generated grid is not orthogonal.

The full grid is shown in Figure 4. The computational domain extended to
four model lengths in front, four model lengths in the normal direction and
four model lengths behind the projectile. Such an extended domain is used to
eliminate the possibility of any wave reflection back on to the model. The
grid consists of 78 points in the longitudinal direction and 40 points in the
normal direction. An expanded view of the grid near the model is shown in
Figure 5. The dark region near the model surface results from clustering of
grid points which are needed to resolve the viscous boundary layer region.
The grid points in the normal direction were exponentially stretched away from
the surface with a minimum spacing at the wall of .00002 D. This spacing
locates at least two to three points within the laminar sublayer. Clustering
in the longitudinal direction was used at X/D = 3.2 and 5.3, the ogive and
boattail junction, respectively, where appreciable changes in the flow vari-
ables are expected.

The projectile base was modeled as an extension of the 7.0' boattail for
a distance of two calibers. The surface line was then turned parallel to the
model axis for the remainder of the wake region. The base flow is thus
modeled as an extended sting. A review of free-flight shadowgraphs for pro-
jectile shapes at transonic speeds does show the wake flow to follow near the
boattail angle for a distance of one to three calibers before turning parallel
to the flow direction.

Results are first presented for M = .94 and a = 0. The turbulence quan-
tities k and e obtained with the two-equation turbulence model are shown in
Figures 6 and 7, respectively, for selected longitudinal stations. One of the
longitudinal stations selected is near the ogive-cylinder junction and the
others are located either near the boattail junction or on the boattail
itself. Note that the station X/D = 6.19 is on the extension of the boattail.
The k-c model prediction is compared with that of the algebraic model at this
station. Figure 6 shows the turbulence kinetic energy profiles in the law of
the wall coordinate. The station X/D = 5.05 is in front of the boattail

59. J. L. Steger, C. J. Nietubicz, and K. R. Heavey, "A General Curvilinear
Grid Generation Program for Projectile Configurations," U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
MR-03142, October 1981. (AD A107334)

60. J. F. Thompson, F. C. Thames, and C. M. Mastin, "Automatic Numeriazl
Generation of Body-Fitted Curvilinear Coordinate System for Field
Containing Any Number of Arbitrary Two-Dimensional Bodies," Journal of
Comp. Physics, Vol. 15, 1974, pp. 299-319.
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ak ae 0 (71)

At the upstream boundary k and c are set to zero while a first-order extrapo-
lation is used at the downstream boundary.

G. Coupling with Mean Flow Equations

The Equation (38) is solved first by the method described in Chapter III
for the mean flow quantities. Next the turbulence field Equations (63) are
solved using the just computed mean flow quantities. Solution of Equations
(63) give k and c and Equation (56) is then used to compute pt" This then

becomes the input in the solution of Equation (38) for mean flow variables and
this process is continued at each time step until steady state results are
achieved. The solution procedure of the turbulence field equations lag that
of the mean flow equations by one time step.

V. RESULTS

Numerical computations have been made for two transonic turbulent flow
cases: (i) attached flow over an axisymmetric projectile; and (ii) separated
flow over an axisymmetric bump model. Both the algebraic and the two-equation
k-c eddy viscosity turbulence models were used. Computed results are present-
ed in the form of surface pressure plots, velocity, turbulent kinetic energy,
turbulent dissipation rate and Reynolds shear stress profiles. Comparison
with experimental data has been made to assess the performance of both turbu-
lence models.

A. Attached Flow over an Axisymmetric Projectile

The transonic flow field about a projectile configuration with a turbu-
lent boundary layer has been computed. All the computed results shown are for
a = 0° , Re = 13 x 106/m and M = 0.94 and 0.97. Numerical results are compared

with experimental measurements57'58 which were performed for the same shape in
the NASA Langley Research Center 8 foot Transonic Pressure Tunnel.

The model geometry is shown in Figure 3. It is an artillery projectile
consisting of a secant-ogive nose, a cylindrical mid-section and a 70 conical
afterbody or boattail of half a caliber (one caliber one diameter).

57. R. P. Reklis, J. E. Danberg, and G. R. Inger, "Boundary Layer Flows on•.
Transonic Pvojectiles, " AIAA Paper 79-1551, 1979.

58. C. J. Nietubicz, G. R. Inger, and J. E. Danberg, "A Theoretical and
Experimental Investigation of a Transonic Projectile Flow Field," AIAA
Paper 82-0101, Januaryj 1982.
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3E Ej+ -1 j + Uj1I

(69)

2 (q -1

Thus, it is equivalent to the central differencing and has an additional
smoothing term. A is a smoothing coefficient inserted into this numerical
dissipation term and can be varied between 0 and 1. A = 1 would correspond to
an overall first-order accuracy in E. A typical range of A used in the compu-
tations is .01 to .1. The smoothing term is treated explicitly.

F. Initial and Boundary Conditions

The k and c equations are marched in time until steady state results are
obtained and thus, solved as an initial -boundary value problem. Initial con-
ditions i.e., profiles of k and c are needed initially in the entire flow
field region. The initial conditions can be arbitrary but it may take longer
time to get the converged solution. Therefore more realistic profiles of k
and e need to be prescribed. This is based on the balance of each of the
terms in the equations. 41  An example of the balance of the terms in the k
equation is reproduced here from Reference 41.

It is clear from Figure 2 that large gradients in the turbulence vari-
ables occur very near the wall and source terms are dominant. Convection
terms are negligible near the wall and the largest terms are the production
and dissipation terms. Based on this local equilibrium, we equate

production =dissipation

to obtain the initial k and e profiles. The turbulent viscosity, W~ appears

in the production term and is obtained from the solution with an algebraic
eddy viscosity model. The above assumption works well for attached wall
bounded flows and is poor for separated or free shear flows.

Since calculations are extended up to the wall, it is easier to specify
the boundary conditions on the wall. At the wall, the dependent variables are
zero.

k c =0 (70)

In the far field which lies outside the edge of the boundary layer, zero
derivatives of k and c are used.
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where

Re- 1  Pt 2 2 2
(- +u)(2 )

S- x y z

and

8

As discussed in the previous chapter, fourth order dissipation terms are
usually added on the right hand side of Equation (62) to help control the
numerical instability. For the turbulence field variables convective terms
often dominate the diffusion in the far field (away from the wall) and can
cause convective instability. To overcome this difficulty, numerical

smoothing based on upwind schemes 55'56 is used. The convection term - for

example is differenced as

3E
(ii = ('j+1/2 "j-1/2 )/A& (68)

where t is a numerical flux given by

Ej + Ej+1 IUj + Uj+ 1

E j+I12 - 2 (qj+1 - qi)

Ej + Ej_1  j3 + UjI (q- q )

j-1/2 . 2 j

and E= qU.

Substituting these numerical fluxes, the right hand side of Equation (68) can
be simplified and Equation (68) can be written as,

55. S. Osher and F. Soloman, "Upwind Schemes for Hyperbolic Systems of
Conservation Laws," Mathematics of Computation, Vol. 38, 1982, pp. 339-
377.

56. S. R. Chakravarthy and S. Osher, 'IWumericaZ Eaperiments with the Osher
Upwind Scheme for the Euler Equations," AIAA Paper 82-0975, June 1982.
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The oper.~tors 6 and 6 are central difference operators, e.g.

6- + A q j- (64)

Using central differencing for space, the second sequence of Equation (63b)
for example, becomes

At (AtA
(- A~ ) 1, At j+j1)]~ Aqj~l I q (65)

L Aqj+,11 ]
for all j and a given 1 where j and 1 are the indices in the & and direc-
tions respectively. This is a 2W block tridiagonal matrix system which can
be rapidly solved using available solvers. Likewise the block tridlagonals
can be formed from the first sequence of Equation (63a).

The viscous terms are of the form Ba3 a and are differenced as21

6 a6C Ej,l+1 + aj~l)(8j,l+1 -jl

(66)

-(il, 1 + ai l,11)(Ojil -j,,]2,;2

Using Equation (66), the block tridiagonal system of Equation (63a) i.e., in
the direction can be written as

At B - At (. +c

7 + '- At (ci. 2c + cjji)j-

(67)

41'l+1]

TA B BJ,1+1 -2(Ae)
2 

( , + cii l)Bj 1+1] [A~jl =RHS (62)
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reduce it to two one-dimensional operators. With the source term retained,
one can include it in either spatial operators or in both or factor it out
altogether. In the present study, we have included it in the operator and
the factored scheme becomes,

[I + At 6 {An][(I - At Dn) + At(6 Bn _ 6 Cn)] Aqn

(62)

S- At(6En + %Gn - %Hn) + At Sn.

Expanding the factors gives Equation (61) back plus additional higher order
terms such as

At26 An6 Bn Aqn

n
For steady state solutions Aq goes to zero and thus, the approximate factor-
ization error vanishes. The factored form Equation (62) has reduced the two-
dimensional matrix inversion problem to two one-dimensional problems which can
be efficiently solved.

E. Solution Algorithm

A convenient solution algorithm is developed for Equation (62) with the
following sequence. - -

[(I - AtDn) + At(6 Bn - cn)] A n = RHS (62) (63a)

n.

[I + At6 AO] Aqn = q (63b)

qn+l =q n + Aqn (63c)

where RHS (62) is the right hand side of Equation (62). First, equation (63a)

is solved for A n  since the right hand side is known at the old time step.
Aqn  becomes the right hand side of Equation (63b) which is then solved for

Aqn This is then added to qn to give qn+l at the next time step as shown in

Equation (63c).
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a "

and .... "-"

(2C k p Re- 1 2i (-C 12

Re.. P2

nn

where

Re- 1  11+t 2 + 2

,= (-+ )( x +4 +•)

and

p 2~ 2 +2 )(2 ~ 2 + 2) u + V + w w2P x + y z 4 X4 y4 z4

Substituting Equation (59) into (58) and rearranging, one obtains

[(I At Dn) + At(6,An + 6 Bn - 6 Cn)] (qn+l _ qn)

(61)

- - At(6 En + 6 Gn - 6 Hn) + At Sn

where I is an identity matrix and 6 , 6 are the spatial difference "a-

tors. This is in the "delta" form since we are solving for Aq = q 1 qn.

D. Approximate Factorization

Direct inversion of the block matrix on the left hand side of Equation
(61) is a formidable task. To avoid this problem, approximate factorization
of the left hand side operator of Equation (61) is frequently used. In the
absence of the source term, one can approximately factor the left hand side to
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The source terms S associated with the turbulence field variables can be very
large. As happens near the wall, the source terms (production, dissipation
and decay) become dominant over the convection and diffusion terms. This can
result in a very stiff algorithm if the source terms are treated entirely in
an explicit manner.5 4  Thus, they are treated implicitly as shown in Equation
(58).

Equation (58) is nonlinear since E, G, H and S are functions of the
dependent variable q. The nonlinearity can be removed by a linearization

procedure. A local Taylor expansion about qn yields.

En+l = En + (E)n (qn+l qn) + O(At 2 )

Gn+1 = Gn + (a)n (qn+l n) + O(At2)
G G + q ~ t2

(59)n+1 n H n qn+1 _n)
Hn+l - Hn + (- )n (nl-q) + O(at2)

_Sj4 (q qn)

Sn+l Sn + (s) ) + O(At2).

Let A B - G C H D -S

q , aq ,q ,aq•

These Jacobian matrices are:

A= [U 0]
0 U

B= [W 0]

(60)

54. P. J. Roache, Computational Fluid Dynamics, Henasa Pub7lishes,

Albuquerque, NM, 1976.
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The variables in Equation (54) are made dimensionless as follows:

- p - U - V -- W

U - V W
p. a, aca

- x y -z- =Z -- t
x Y D . t

(55)
lit-' - t

- - k -i-

a2  a3ID

For simplicity the 'bars' have been removed from the variables in Equation
(54). The turbulent viscosity in nondimensional form becomes

lt = C R-2 Re (56)

where

Re-
'Jo0

C. Numerical Method

The numerical scheme used is the Beam-Warming 23 Euler implicit scheme.
The time differencing is

n+l = n + At (_q)n+l + O(At2 ) (57)
qat

If Equation (54) is inserted in (57), one has

n+1 qn A E G -H Sn+1 + O(At 2 ). (58)'" qn~ n - + S) @
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(3) compare the predicted mean flow and turbulence quantities with
* experimental data, and

(4) compare the k-e turbulence model with an algebraic mixing length
turbulence model as applied to above problems.

* B. Summary of Results

The thin layer form of the compressible Navier-Stokes equations was
solved using a time dependent, implicit, approximately factored, finite dif-
ference scheme. The equations were marched in time until the desired steady

* state results were achieved.

(1) For the computation of turbulent flows, the turbulence closure
was provided with Baldwin-Lomax algebraic and Chien's k-e two-equation eddy
viscosity models. The k and E; equations were developed in the general spatial
coordinates and incorporated into a thin layer, time dependent Navier-Stokes
code. The same implicit algorithm that simultaneously solves the mean flow
equations was extended to solve the turbulence field equations using block
tridiagonal matrix inversions. Calculations with the k-s model have been
extended up to the wall and the exact values of the dependent variables at the
wall have been used as boundary conditions. Very small grid spacing was
utilized close to the wall in order to resolve the steep gradients of the

*dependent variables observed in the viscous sublayer. The distance of the
first grid point from the wall should be within y~ < 1.25.

(2) The transonic flow field about an artillery projectile (secant- -

ogive, cylinder, boattail) with a turbulent boundary layer has been computed.
The computed results were obtained for a = 00, Re = 13 x 10/m and M.~ = .94
and .97. These results were compared with the available experimental measure-

* ments of the mean flow quantities.

Computed results show the turbulent kinetic energy, dissipation rate and
turbulent eddy viscosity profiles. The velocity profiles and the surface

*pressure distribution have been obtained with both the algebraic and the k-s;
turbulence models and are compared to experiment. The results are in good
agreement. The rapid expansions at the ogive and the boattail junctions are
well predicted by both models. A small improvement with the k-s model predic-
tion is found at M = .94.

(3) Numerical computations have also been made for a transonic tur-
bulent flow over an axisymmetric bump model which involves shock induced sepa-

*ration. The computed results were obtained for M .875, a =00 and
Re = 13.6 x 106/m. The computed results are compared with the experimental
measurements for both the mean flow and the turbulence quantities which are
available for this r~ase.

The surface pressure distribution and the contour plots of Mach number
and pressure indicate the presence of a strong shock wave. The position of
the shock wave is well predicted by both the algebraic and the k-s turbulence
models and compares well with experiment. Results are presented showing the
development of the mean velocity, turbulent shear stress and turbulent kinetic

* energy profiles over the aft portion and just downstr'eam of the bump. The
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results are generally in good agreement with the experimental data. Predic-
tions by both turbulence models are poor in the separated flow region. In the
redevelopment region downstream, however, k-e model prediction is in better
agreement with the data. The k-s model successfully predicts the location and
the trend in the peaks of the turbulent shear stress and turbulent kinetic
energy profiles. The algebraic model predicts sharp increase and decrease in
the turbulent shear stress which is physically unrealistic.

(4) The algebraic model is based on local information and predicts
undesirable sharp increase and decrease in the turbulent shear stress. As
expected, the k-s model avoids this since length scales are obtained by solv-
ing a transport equation. Poor comparison between the predictions by both
models and the experiment was found in the recirculating region. Some
improvements were found in the developing regions downstream with the k-e
model. Where the mean velocities are relatively in good agreement with the
experimental results, so are the turbulent shear stress and kinetic energies.

C. Recommendations

The major difference between the calculations and the experiment is in
the separated region. It is in this region that the turbulent shear stress
and kinetic energy are under predicted by the k-E model. At this stage it is
exceedingly difficult to sort out the discrepancies between computation and
experiment that arise separately from turbulence modeling and computational
procedures. This situation will continue until grid independent computations
can be achieved and numerical smoothing procedures are fully understood.

With this in mind one can only speculate for improving the model predic-
tions. A look at the balance of the terms in the k-equation suggests that the
balance of the production and the dissipation must occur farther away from the
wall in order to produce experimentally observed peaks in turbulent shear
stress and kinetic energy. This in turn implies tuning the e equation.
Further computational investigation is recommended in this regard. The
protuberance configuration is a good case for testing turbulence models. It
is recommended that computations be made for this configuration to further
validate the k-s model. Additionally, the wake flow or the base flow behind
the base of the projectile is one where k-s model application is more appro-
priate since it predicts gradual change in length scales. It is believed that
the body of information obtained in the present research forms a sound basis
for attacking such complex flow problems.

55



z7 1

ti - -x wY

PROJECT ILE -TYPE BODY X=CONST PLANE
(a) (b)

R
Ax

4P:CONST PLANE

Figure 1. Axisymmetnic Body and the Coordinate System

300
PRODUCTION

250 r

200 >

150/ \ \

100

DISSIPATION .

50

0

-50

DIFFUSION
-100 I I

0 10 20 30 40 50 60 70 80 90 100
Y+p

Figure 2. Balance of Terms in the k-equation (Reference 41)

56



0.188- 5.613

5.109

3.014 1 2 3 4 5 79

1.000 D 101 0.876 D

L000D18.880 R 1 i2 13114

WALL PRESSURE
TAP S

DIMENSIONS IN CALIBERS
-4.504 + ONE CALIBER- 20.190Ocm

Fi gure 3. Model Geometry

30

20

-10

0

-)O0
-30 -20 -10 0 10 20 30

X/D

Figure 4. Computational Grid

57



4

3

2

0
-1 0 1 2 3 4 5 6 7

X/D

Figure 5. Expanded View of the Grid Near the Model

X/D
-3.42

10000 5.05
... 5.36

5.61
6.19

1000

100

10

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
k

Figure 6. Turbulent Kinetic Energy Profiles, M.= .94, a=0

58



X/D
-3.42

10000 5.05
... 5.36

5.61
6.19

1000

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fi gure 7. Turbulent Dissipation Rate Profiles, M. .94, 0

X/D
-3.42

10000 505
.... 536

-~- 5.61

~6.1
100

100

10

0 100 200 300 400 500 600 700 800

Figure 8. Turbulent Viscosity Profiles, M, = .94, a 0 (Algebraic Model)

59



X/D
II, - 3.42

10000 505
... 5.36

........... .............. 5 .6 1

100 /

10

0 100 200 300 400 500 600 700 800

Figure 9. Turbulent Viscosity Profiles, M. .94, a =0 (k-c- Model)

40

-k-e MODEL
ALGEBRAIC MODEL

1w
30

20

10

0
0 100 200 300 400

U (mi/3)

Figure 10a. Velocity Profiles, M. .94, a=0, X/D =3.42

60



40
-k-e MODEL

.--- ALGEBRAIC MODEL

o EXPERIMENT

300

0
E~ 0
S20 0

0
0

100

100

01
0 100 200 300 400

u (mi/s)

Fi gure 10b. Velocity Profiles, M,, .94, =0, X/D 5.05

40

-k-e MODEL

- ---ALGEBRAIC MODEL

O EXPERIMENT*
30

S20

10

06
0 100 200 300 400

u (rn/A)

Figure 10c. Velocity Profiles, M,= .94, =0, X/D =5.36

61



40 .

-k-e MODEL
..... ALGEBRAIC MODEL

0 EXPERIMENT

30

E20

10

0:

00

0 120 300 400 6

Figure 10d. Velocity Profiles, M.= .94, a 0, X/D =5.61

40

-k-e MODEL
.--- ALGEBRAIC MODEL

30

20

I

0
0 100 200 300 400

u (rn /1)

Fi gure 10e. Velocity Profiles, %~ .94, a 0, X/D 6.19

62



03 - -k-c MODEL

0.2 .... ALGEBRAIC MODEL

0.1 0 EXPERIMENT

0.0

-0.1

u -0.2

-0.4

-0.5

-0.6

-.7
0 1 2 3 4 5 6 7

X/D

Figure 11. Surface Pressure Distribution, M, = .94, 0

X/0
-3.42

10000 .. . .5.05
--- 5.36

--- 5.61
6.19

1000

100

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

Figure 12. Turbulent Kinetic Energy Profiles, M.,= .97, a 0

63



X/D
-3.42

10000 .....5.05
-... 5.36

5.61
6.19

1000 0

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1,6

Fi gu re 13. Turbulent Dissipation Rate Profiles, M. .97, a 0

0.5
X/D
-3.42

... 4........................... 5.05
0.4.. 5.36

5.61
6.19

0.3

0.2

0.1

0.0*- -

0 100 200 300 400 500

Figure 14. Turbulent Viscosity Profiles, M.2, .97, =0 (Algebraic Model)

64



0.5
K/0

3.42
I.... 5.05

0.453
5.61

0.3 169
0.2

0.1 -

0.0 -

0 100 200 300 400 500
'L t

Fi gure 15. Turbulent Viscosity Profiles, M. .97, a=0 (k-c Model)

-k-,e MODEL
...................... ALGEBRAIC MODEL

10000

1000 ..... .

1000

0 25 50 75 100 125 150 175 200

Figure 16a. Turbulent Viscosity Profiles, M., .97, a 0, X/D =3.42

65



- k-e MODEL
----ALGEBRAIC MODEL

10000

.............~.. ....... ,.....

100

10

0 50 100 150 200 250 300 350 400

Figure 16b. Turbulent Viscosity Profiles, M,. .97, a 0, X/D =5.05

.................ALGEBRAIC MODEL
10000

1000

0 50 100 150 200 250 300 350 400

Figure 16c. Turbulent Viscosity Profiles, M.,= .97, a 0, X/D 5.36

66



-k-E MODEL

------------------------ ALGEBRAIC MODEL

1000

10

10

0 50 100 150 200 250 300 350 400

Figure 16d. Turbulent Viscosity Profiles, Me,, .97, a=0, X/D =5.61

-k-E MODEL
10000- ALGEBRAIC MODEL

................

100

10

0 100 200 300 400 500 600 700 B00

Figure 16e. Turbulent Viscosity Profiles, M. .97, a=0, X/D =6.19

67



2.0
-k-c MODEL

......------------------ALGEBRAIC MODEL

-0 EXPERIMENT

1.5

0

1.0 0

0

0.5

0.0
0 5 10 15 20

uv/U., x101
igure 29f. Turbulent Shear Stress Profiles, M., .875, a=0, x/c 1.0

2.0
- -ie MODEL

...- .ALGEBRAIC MODEL

0 EXPERIMENT

1.5 0

0

0

E

1.0 0

0

0

0.5 0

0

0.09
0 5 10 15 20

uv/U. 10O

lure 29g. Turbulent Shear Stress Profiles, M. .875, a=0, x/c =1.062

82



2.0

-k-c MODEL
----------------------ALGEBRAIC MODEL

0 EXPERIMENT

1.5

E
-~1.0

* 0

0.5 i 0
* 0

* 0

0.0
0 5 10 15 20

-/U, 2 x101

Fi gure 29d. Turbulent Shear Stress Profiles, M. .875, a=0, x/c =.8715

2.0

-k-e MODEL
----------------------ALGEBRAIC MODEL
o EXPERIWtNT

1.5

E
.~1.0

0.5 0

-- -- - -- -- - -- -- - -- -- - -------------.....

0.0 ..

0 5 10 15 20

Figure 29e. Turbulent Shear Stress Profiles, M. .875, a 0, x/c =.938

81



2.0
-k-c MODEL

0o--- ALGEBRAIC MODEL
0 EXPERIMENT

1.5

0

E 0
-~1.0

0

0.5 0

0 5 10 15 20

:--V/ U m2 10 3

Figure 29b. Turbulent Shear Stress Profiles, M. .875, a =0, x/c .625

2.0

-k-e MODEL
-----------------------ALGEBRAIC MODEL

0 EXPERIMENT

E
.. 1.0

0.5 5

0 0
0.0~ ~ ~ ~~ ~. ....................... ..........-

0510 15 20

Figure 29c. Turbulent Shear Stress Profiles, M, = .875, a =0, x/c =.75

80



2.00
-k-e MODEL
----ALGEBRAIC MODEL 0

o EXPERIMENT
15 0

0

1.0 0

:0

0.5- 0

/0

0.0 0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

u /u"

Figure 28h. Mean Velocity Profiles, M, .875, a 0, x/c =1.375

2.0- 
k- MODEL

------------------ALGEBRAIC MODEL

o EXPERIMENT

1.5

0

0.5

0.0
0 5 10 15 20

Figure 29a. Turbulent Shear Stress Profiles, M., .875, a =0, x/c .563

79



2.0
- k-e MODEL 0

...... ALGEBRAIC MODEL 
.

0 EXPERIMENT 0 0

1.5

E 0
o -1.0

0

0.5-
00

0o~o

0.0--
-0.2 0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4

U /U.

Figure 28f. Mean Velocity Profiles, M = .875, a = 0, x/c = 1.125 . -

2.0
-- k-e MODEL 0

...... ALGEBRAIC MODEL -

0 EXPERIMENT
:0

1.5 "

E 01.0-
/° 0

*0

0.5- 0

0.0
-0.2 0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4

U /U.

Figure 28g. Mean Velocity Profiles, M. .875, = 0, x/c : 1.25 -

78

I - I . I . . - - -. ..' .-



2.0 - k-e MODEL 0

----ALGEBRAIC MODEL0
o EXPERIMENT

11.5 -0

.0

E
. 1.0

0/

0.5- o

0.0 5

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
U /U.

Fi gure 28d. Mean Velocity Profiles, M. .875, a=0, x/c 1.0.

2.0
k-e MODEL 0...---ALGEBRAIC MODEL

o EXPERIMENT

1.5 :0

... 1.0

0'
0.5 0

0

0.01 -V

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
U /U.

Figure 28e. Mean Velocity Profiles, M. .875, a=0, x/c =1.062

77



2.0
-k-e MODEL
----ALGEBRAIC MODEL

o EXPERIMENT

1.5

E /0
-) .0

/0

0.5-

0.0
-0.2 0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 P

U Iu"

Figure 28b. Mean Velocity Profiles, M. .875, a =0, x/c =.875

2.0
-k-e MODEL
.---ALGEBRAIC MODEL

10
1 .50

/0

1.0 . 0

0.5 0,

07
0--

0.01-
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 28c. Mean Velocity Profiles, M.= .875, a=0, x/c =.938

76



0.8
- -e MODEL

*--ALGEBRAIC MODEL

0 EXPERIMENT
0.7

0.6

0.50

0

0.4

0.3I
-0.5 0.0 0.5 1.0 1.5

X Ic

Fi gure 27. Surface Pressure Distribution, M, = .875, 0

2.0
-k-e MODEL

.... ALGEBRAIC MODEL

0 EXPERIMENT
0

1.5

0

0
:0

10
0.5 --

0

0.0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

U .

Fi gure 28a. Mean Velocity Profiles, M. .875,u=0, x/c= .75

75



0.75

0.70

0.65

0.60

0.55

0.50-
9.0 9.2 9.4 9.6 9.8 10.0

XID

Fi gu re 25. Stream Function Contours, M. .875, a=0 (Algebraic Model)

0.75

0.70

0.65

0.60

0.55

0.50 -
9.0 9.2 9.4 9.6 9.8 10.0

X/D

Fi gure 26. Stream Function Contours, M.= .875, a =0 (k-E Model)

74



2.00

1.75

1.50 N

1.25 L
.1.00m

0.75

0.50

0.25

7.5 8.0 8.5 9.0 9.5 10.0 10.5
X/D

Figure 23. Pressure Contours, M. .875, a=0

0.75

0.70 -

0.65 l

0.60

0.55 '\

0.50,
9.0 9.2 9.4 9,6 9.8 10.0

XD

Figure 24. Velocity Vectors, Mm .875, a=0

73

. ~ ~~ ..



2.00

1.75

1.50

1.25

-- 1.00

0.75

0.50

0.25

0.001I I

7.5 8.0 8.5 9.0 9.5 10.0 W0.5
X/D

Fi gure 21. Expanded Grid Near the Bump

2.001

1.75

1.50

-1.00

0.75

0.50

0.25

0.00
7.5 8.0 8.5 9.0 9.5 10.0 10.5

X/D

Figure 22. Mach Contours, M, = .875, a 0

72



SHOCK
Mw0.875

IR EC IRC ULAT ION

KC (20.3 cm). (5. m

D (1..2 cm)

Fi gure 19. Schematic Illustration of the Bump Model

8

6

4

r4-

2

0

-2 I I I
-2 0 2 4 6 8 10 12 14 16

X/D

Figure 20. Full Computational Grid

71



40 ~ k-E MODEL

---- ALGEBRAIC MODEL

O EXPERIMENT

30

7 20

100

0100 200 300 400

U (mi/S)

Figure 17c. Velocity Profiles, M. .97, a = 0, X/D 5.36

40

k- MODEL
-... ALGEBRAIC MODEL

O EXPERIMENT

300

1E
S20

10

0 100 200 300 400
U (m /1)

Figure 17d. Velocity Profiles, M., .97, a=0, X/D =5.61

69



., " - . S - . - .. , ,. ' . . .

40

- k-e MODEL
-.-.--- ALGEBRAIC MODEL

30

e 20

10

0 ------
0 100 200 300 400

u (m/S)

Figure 17a. Velocity Profiles, M. = .97, a 0 0, X/D = 3.42

40

k-e MODEL

ALGEBRAIC MODEL

0 EXPERIMENT

30

0

-~ 0
E 20

200

0

10

0
0 100 200 300 400

U (rn/S)

Figure 17b. Velocity Profiles, M. = .97, a = 0, X/D = 5.05

68



2.0
- k-e MODEL

.,------- ALGEBRAIC MODEL

0 EXPERIMENT

1.5

0E ,

1.0 0

0

0.5 0
*~ 0

0
* 0

0,
0 5 10 15 20

_UV/ um x 10 3

Figure 29h. Turbulent Shear Stress Profiles, M. = .875, a = 0, x/c = 1.125

2.0

-k-E MODEL
------------------- ALGEBRAIC MODEL

O EXPERIMENT

1.5

E
Z 1.0 - '-

0

0.5 0

* 0
-o 0
0

0
0.0

0 5 10 15 20

-UV/U. x 101

Figure 29i. Turbulent Shear Stress Profiles, M = .875, 0 = , x/c 1.25

83

.... . . ... " ". -: "" -', . / :..-'--...-. .-... ..;: ..-:. , . -



2.0

-k-e MODEL
--- ALGEBRAIC MODEL

o EXPERIMENT

E
z! 1.0

0

0.5 0S

0
- 0

o0
0.0 1 011111 

.

0 5 t0 15 20

Figure 29j. Turbulent Shear Stress Profiles, M., .875, 0, xlc =1.375

2.0

-k-e MODEL

0 EXPERIMENT

1.5

E
-~1.0

0.5

0.0
0 10 20 30 40

k/u 0 ,2K jo

Figure 30a. Turbulent Kinetic Energy Profiles, %0  .875, a 0, x/c =.563

84



2.0
- k-e MODEL

0 EXPERIMENT

1.5

0

0.5 0

0 0 0
00 10 20 30 40

k/ul.~2 103

Figure 30b. Turbulent Kinetic Energy Profiles, M.~ .875, a =0, xlc =.625

a 2.0
0 - k-4E MODEL

0 EXPERIMENT

i 1.5

E
. 1.0

0.5 0
0

S0
0

00
0 10 20 30 40

k/c2 x 103

*Figure 30c. Turbulent Kinetic Energy Profiles, M. .875, a 0, x/c =.75

85



2.0

0 - k-e MODEL

0 EXPERIMENT

u1.0

0.5 0
0

0
0

0.0
0 10 20 30 40 0

k/u. 2 1K 10

Figure 30d. Turbulent Kinetic Energy Profiles, M,,= .875, 0, x/c =.875

2.0

0 - k-c MODEL
0 EXPERIMENT

0

0

E0
-~1.0

0.5

00
00

0.0
0 10 20 30 40

k/UMZX 10

Figure 30e. Turbulent Kinetic Energy Profiles, M =.875, a 0, x/c =.938

86



2.0
0 - k-e MODEL

0 EXPERIMENT
0

0

1. 0 0

0

0.5 0

0

0.0 1 0
0 10 20 30 40

k/u, 2 "10

Figure 30f. Turbulent Kinetic Energy Profiles, M. .875, ci=0, x/c =1.0

2.0

-k-e MODEL
0 0 EXPERIMENT

1.5
0

E0

0
0

0.5 0
0

0.0
0 10 20 30 40

k/u.,2 A 103

Figure 30g. Turbulent Kinetic Energy Profiles, M., .875, ci=0, x/c =1.062

87



2.0

0 k-e MODEL
0 EXPERIMENT

1.5

0

-~1.0 0

0
0

0.5 -0

0
0

0.Q01
0 10 20 30 40

k/u~2"10

Figure 30h. Turbulent Kinetic Energy Profiles, M. .875, c~=0, x/c 1. 125

2.0
0 -k-e MODEL

o EXPERIMENT
0

1.5

0

ul. 0

0.5 0
0

0

0.0
0 10 20 30 40

k/u02"X 103

Figure 30i. Turbulent Kinetic Energy Profiles, M. .875, a 0, x/c =1.25

88

. . . . . . .1



2.0

-k-e MODEL

o0 EXPERIMENT

1.5
0

E~ 0
-v 1.0

0.5 0

0.0
0 10 20 30 40

k/u. 2 w 103

Figure 30j. Turbulent Kinetic Energy Profiles, M.= .875, a=0, x/c =1.375

1.00
k-e MODEL

o EXPERIMENT 0

0.75
0

0 0

E
S0.50

0.25

0.00 III
0.00 0.25 0.50 0.75 1.00 1.25 1.50

x /c

Figure 31. Location of Maximum Turbulent Shear Stress, M. .875, a =0

89

NOW



I

0.030"" "
- k-e MODEL

0 EXPERIMENT

0.02 5

0.020
e 00 0

0

0.015 0

I0

0.010 00 .

0

0.005

0000 1 1 0 I 1 1 - ":

0.00 1125 0.50 0.75 1.00 1.25 1.50
x/C

Figure 32. Variation of Maximum Turbulent Shear Stress, M. = .875, a 0

1.25
- k-c MODEL

0 EXPERIMENT

1.00 0

0.75 0

E0

0 0

0.50 0

0.25 0

0.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50

X/C

Figure 33. Location of Maximum Turbulent Kinetic Energy, M,. .875, a 0

90

. . . . :: ::



0.040 - k-e MODEL

0.035 0 EXPERIMENT

0.030

x0.025
a

0.020-0

0.0 15

0.010

0.005 00

0.000 II
0.00 0.25 0.50 0.75 1.00 1.25 1.50

x/C

Figure 34. Variation of Maximum Turbulent Kinetic Energy, M. .85 =

91



REFERENCES

1. J. 0. Hinze, Turbulence, 2nd Edition, McGraw-Hill, New York, 1975.

2. A. J. Wadcock, "Simple Turbulence Models and Their Applications to Boun-
dary Layer Separation," NASA CR-3283, May 1980.

3. Kuei-Yuan Chien, "Predictions of Channel and Boundary-Layer Flows with a
Low-Reynolds-Number Turbulence Model," AIAA Journal, Vol. 20, January
1982, pp. 33-38.

4. W. P. Jones and B. E. Launder, "The Prediction of Laminarization with a
Two-Equation Model of Turbulence," Int. Journal of Heat and Mass Trans-
fer, Vol. 15, 1972.

5. W. P. Jones and B. E. Launder, "The Calculation of Low-Reynolds-Number
Phenomena with a Two-Equation Model of Turbulence," Int. Journal of Heat
and Mass Transfer, Vol. 16, 1973.

6. B. E. Launder, C. H. Pridden, and B. I. Sharma, "The Calculation of
Turbulent Boundary Layers on Spinning and Curved Surfaces," Journal of
Fluids Engineering, March 1977, pp. 231-239.

7. D. R. Hartree and J. R. Womersley, "A Method for the Numerical or Mechan-
ical Solution of Certain Types of Partial Differential Equations," Proc.
Royal Soc. London, A161, p. 313, 1937.

8. R. H. Pletcher, "On a Finite-Difference Solution for the Constant
Property Turbulent Boundary Layer," AIAA Journal, Vol. 7, February 1969,
pp. 305-311.

9. R. S. Hirsh and D. H. Rudy, "The Role of Diagonal Dominance and Cell
Reynolds Number in Implicit Methods for Fluid Mechanics Problems,"
Journal of Computational Physics, 16, 1974, pp. 304-310.

10. S. V. Patankar and D. B. . ~alding, Heat and Mass Transfer in Boundary
Layers, Intertext Books, London, 1970.

11. J. E. Harris, "Numerical Solution of the Equations for Compressible
Laminar, Transitional, and Turbulent Boundary Layers and Comparisons with
Experimental Data," NASA TR-R 368, 1971.

12. F. G. Blottner, "Finite Difference Methods of Solution of the Boundary
Layer Equations," AIAA Journal, Vol. 8, 1970, pp. 193-205.

13. T. Cebeci, A. M. 0. Smith, and G. Mosinskis, "Calculation of Compressible
Adiabatic Turbulent Boundary Layers," AIAA Journal, Vol. 8, November
1970, pp. 1974-1982.

14. F. G. Blottner, "Variable Grid Scheme Applied to Turbulent Boundary
Layers," Computer Methods in Applied Mechanics and Engineering, 4, 1974,
pp. 179-194.

92

. ...........;:-,-. ,•. , ;,: ,...,..-,..,.-... ....-...........-.- ,,-....',',



REFERENCES (Cont' d)

15. T. J. Coakley and J. R. Viegas, "Turbulence Modeling of Shock Separated
Boundary-Layer Flows," Paper presented at the Symposium on Turbulent
Shear Flows, University Park, PA, April 1977.

16. J. R. Viegas and T. J. Coakley, "Numerical Investigation of Turbulence
Models for Shock-Separated Boundary-Layer Flows," AIAA Journal, Vol. 16,
No. 4, April 1978.

17. J. R. Viegas and C. C. Horstman, "Comparison of Multiequation Turbulence
Models for Several Shock Boundary-Layer Interaction Flows," AIAA Journal,
Vol. 17, August 1979, pp. 811-820.

18. R. W. MacCormack, "Numerical Solution of the Interaction of a Shock Wave
with a Laminar Boundary Layer," Lecture Notes in Physics, Vol. 8,
Springer-Verlag, 1971, pp. 151-163.

19. R. W. MacCormack, "An Efficient Numerical Method for Solving the Time-
Dependent Compressible Navier-Stokes Equations at High Reynolds Number,"
Computing in Applied Mechanics, AMD Vol. 18, ASME, 1976.

20. L. B. Schiff and J. L. Steger, "Numerical Simulation of Steady Supersonic
Viscous Flow," AIAA Paper No. 79-0130, January 1979.

21. J. L. Steger, "Implicit Finite Difference Simulation of Flow About
Arbitrary Geometries with Application to Airfoils," AIAA Journal, Vol.
16, No. 4, July 1978, pp. 679-686.

22. T. H. Pulliam and J. L. Steger, "On Implicit Finite-Difference Simula-
tions of Three-Dimensional Flow," AIAA Journal, Vol. 18, No. 2, February
1980, pp. 159-167.

23. R. Beam and R. F. Warming, "An Implicit Factored Scheme fortheCompress-
sible Navier-Stokes Equations," AIAA Paper No. 77-645, June 1977.

24. B. S. Baldwin and H. Lomax, "Thin Layer Approximation and Algebraic Model
for Separated Turbulent Flows," AIAA Paper No. 78-257, January 1978.

25. M. Visbal and D. Knight, "Evaluation of the Baldwin-Lomax Turbulence
Model for Two-Dimensional Shock Wave Boundary Layer Interactions," AIAA
Paper No. 83-1697, July 1983.

26. A. Leonard, "Panel Discussion: Large Eddy Simulation Techniques," AIAA
Paper No. 83-1878-CP, July 1983.

27. K. Dang, "Evaluation of Simple Subgrid-Scale Models for the Numerical
Simulation of Homogeneous Isotropic and Anisotropic Turbulence," AIAA
Paper No. 83-1692, July 1983.

28. P. Moin, "Probing Turbulence via Large Eddy Simulation," AIAA Paper No.
84-0174, January 1984.

93

...............



- .--.-- -r.- - - - .. - - - .. ...-. . . - -

REFERENCES (Cont'd)

E. R. Van Driest, "On Turbulent Flow Near a Wall," Journal of the Aero-
nautical Sciences, Vol. 23, No. 11, November 1956.

W. C. Reynolds, "Computation of Turbulent Flows," Ann. Rev. Fluid Mech.,
Vol. 8, 1976, pp. 183-208.

P. Bradshaw, D. H. Ferris, and N. P. Atwell, "Calculation of Boundary
Layer Development Using the Turbulent Energy Equation," Journal of Fluid
Mechanics, No. 28, p. 593, 1967.

P. G. Saffman and D. C. Wilcox, "Turbulence Model Predictions for Turbu-
lent Boundary Layers," AIAA Journal, Vol. 12, No. 4, 1974.

D. C. Wilcox and R. M. Traci, "A Complete Model of Turbulence," AIAA
Paper No. 76-351, 1976.

D. C. Wilcox and M. W. Rubesin, "Progress in Turbulence Modeling for
Complex Flow Fields Including Effects of Compressibility," NASA TP-1517,
1980.

B. J. Daly and F. H. Harlow, "Transport Equations in Turbulence," Physics
of Fluids, No. 13, p. 2634, 1970.

B. E. Launder, G. J. Reece, and W. Rodi, "Progress in the Development of
Reynolds Stress Closure," J. Fluid Mechanics, Vol. 68, 1975.

V. Reitman, M. Israeli, and M. Wolfshtein, "Numerical Solution of the
Reynolds Stress Equations in a Developing Duct Flow," AIAA Paper No. 83-
1883, July 1983.

A. Sugavanam, "Near-Wake Computations with Reynolds Stress Models," AIAA
Paper No. 83-1696, July 1983.

J. G. Marvin, "Turbulence Modeling for Computational Aerodynamics," AIAA
Paper No. 82-0164, January 1982.

J. J. Gorski, T. R. Govindan, and B. Lakshminarayana, "Computation of
Three-Dimensional Turbulent Shear Flows in Corners," AIAA Paper No. 83-
1733, July 1983.

P. Van Gulick, "Application of the k-c Turbulence Model to a Turbulent
Boundary Layer Solution for Flow about a Spinning Yawed Projectile at
Mach 3," Master's Thesis, University of Delaware, June 1983.

H. G. Hoffman, "Improved Form of the Low Reynolds Number k-c Turbulence
Model," Phys. Fluids, Vol. 18, March 1975, pp. 309-312.

C. H. G. Lam and K. Bremhorst, "A Modified Form of the k-c Model for
Predicting Wall Turbulence," Journal of Fluids Engineering, Vol. 103,
September 1981, pp. 456-460.

94

. ... . ....................................-



REFERENCES (Cont'd)

G. S. Deiwert, "Numerical Simulation of High Reynolds Number Transonic
Flows," AIAA Journal, Vol. 13, No. 10, October 1975, pp. 1354-1359.

P. Kutler, S. R. Chakravarthy, and C. K. Lombard, "Supersonic Flow Over
Ablated Nosetips Using an Unsteady Implicit Numerical Procedure," AIAA
Paper 78-213, 1978.

" R. W. MacCormack and A. J. Paullay, "The Influence of the Computational
Mesh on Accuracy for Initial Value Problems with Discontinuous or Non-
unique Solutions," Computers and Fluids, Vol. 2, 1974, pp. 339-361.

• H. Viviand, "Conservative Forms of Gas Dynamic Equations," La Recherche
Aerospatile, No. 1, January-February 1974, pp. 65-68.

" C. J. Nietubicz, T. H. Pulliam, and J. L. Steger, "Numerical Solution of
the Azimuthal-Invariant Thin-Layer Navier-Stokes Equations," U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02227, March 1980. (AD A085716) (Also see AIAA Journal, Vol. 18, No.
12, December 1980.)

I. C. J. Nietubicz, "Navier-Stokes Computations for Conventional and Hollow
Projectile Shapes at Transonic Velocities," U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03184, July
1982. (AD A116866) (Also see AIAA Paper No. 81-1262, June 1981.)

i. J. Sahu, C. J. Nietubicz, and J. L. Steger, "Numerical Computation of
Base Flow for a Projectile at Transonic Speeds," U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02495,
June 1983. (Also see AIAA Paper No. 82-1358, August 1982.) (AD A130293)

J. Sahu, C. J. Nietubicz, and J. L. Steger, "Navier-Stokes Computations
of Projectile Base Flow with and without Base Injection," U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02532, November 1983. (AD A135783) (Also see AIAA Paper No. 83-0224,
January 1983.)

?. G. S. Diewert, "A Computational Investigation of Supersonic Axisymmetric
Flow Over Boattails Containing a Centered Propulsive Jet," AIAA Paper No.
83-0462, 10-13 January 1983.

3. J. Sahu and C. J. Nietubicz, "Numerical Computation of Base Flow for a
Missile in the Presence of a Centered Jet," AIAA Paper No. 84-0527,
January 1984.

1. P. J. Roache, Computational Fluid Dynamics, Hermasa Publishers,
Albuquerque, NM, 1976.

i. S. Osher and F. Soloman, "Upwind Schemes for Hyperbolic Systems of Con-
servation Laws," Mathematics of Computation, Vol. 38, 1982, pp. 339-377.

i. S. R. Chakravarthy and S. Osher, "Numerical Experiments with the Osher
Upwind Scheme for the Euler Equations," AIAA Paper 52-0975, June 1982.

95

- . . . . .. . . . . . . . . . . .



REFERENCES (Cont'd)

P. Reklis, J. E. Danberg, and G. R. Inger, "Boundary Layer Flows on
"ansonic Projectiles," AIAA Paper 79-1551, 1979.

J. Nietubicz, G. R. Inger, and J. E. Danberg, "A Theoretical and
(perimental Investigation of a Transonic Projectile Flow Field," AIAA
iper 82-0101, January 1982.

, L. Steger, C. J. Nietubicz, and K. R. Heavey, "A General Curvilinear
id Generation Program for Projectile Configurations," U.S. Army
allistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
-03142, October 1981. (AD A107334)

• F. Thompson, F. C. Thames, and C. M. Mastin, "Automatic Numerical Gen-
ration of Body-Fitted Curvilinear Coordinate System for Field Containing
ny Number of Arbitrary Two-Dimensional Bodies," Journal of Comp.
hysics, Vol. 15, 1974, pp. 299-319.

D. Bachalo and D. A. Johnson, "An Investigation of Transonic Turbulent
oundary Layer Separation Generated on an Axisymmetric Flow Model," AIAA
aper No. 79-1479, 1979.

* A. Johnson, C. C. Horstman, and W. D. Bachalo, "Comparison Between
xperiment and Prediction for a Transonic Turbulent Separated Flow," AIAA
ourral, Vol. 20, No. 6, June 1982, pp. 737-744.

L. Steger and 0. S. Chaussee, "Generation of Body Fitted Coordinates
sing Hyperbolic Partial Differential Equations," FSI Report 80-1, Flow
imulations, Inc., Sunnyvale, CA, January 1980.

J J. Nietubicz, K. R. Heavey, and J. L. Steger, "Grid Generation Tech-
iiques for Projectile Configurations." ARO Report 82-3, Proceedings of the
982 Army Numerical Analysis and Computers Conference.

96



7 D-RI52 653 NAVYIER-STOKES COMPUTATIONAL 
STUDY OF XISYMMETRIC 21

I TRANSONIC TURBULENT FLO.. (U) ARMY BALLISTIC RESEARCH
LRB ABERDEEN PROVING GROUND MD J SANU FEB 85

UNCLASSIFIED .BRL-TR-2643 SBI-AD-F308.599 F/G 29/4 ML



1 1 g gj j~J
Q _ 315 11122

IIIIIIIII

1111 il lll. 8
1*25 1 4 1 6



BIBLIOGRAPHY

1. H. Schlichting, Boundary Layer Theory, Seventh Edition, McGraw-Hill,
N.Y., 1979.

2. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of
Turbulence, Vol. 1, MIT Press, Cambridge, MA, 1971.

3. H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press,
Cambridge, MA, 1972.

4. P. Bradshaw, An Introduction to Turbulence and Its Measurement, Pergamon
Press, New York, 1971.

5. T. Cebeci and A. M. 0. Smith, Analysis of Turbulent Boundary Layers,
Academic Press, Inc., New York, 1974.

6. P. Bradshaw, ed., Turbulence, Springer-Verlag, 1976.

7. B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence,
Academic Press, Inc., New York, 1972.

8. F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, eds., Turbu-
lent Shear Flows I, Springer-Verlag, 1979.

9. S. J. Kline, B. J. Cantwell, and G. M. Lilley, eds., Complex Turbulent
Flows, Computation and Experiment, Vols. 11 and 111, 1982.

10. D. R. Chapman, H. Mark, and M. W. Pirtle, "Computers vs Wind Tunnels for
Aerodynamic Flow Simulation," Aeronautics and Astronautics, April 1975.

97



LIST OF SYMBOLS

a speed of sound

A+ Van Driest's damping factor

*c chord of the circular-arc bump

-C 1,c2,CP empirical constants in the k-c turbulence model

c specific heat at constant pressure

pressure coefficient, 2(P -P)/p-U
2

D body diameter

e total energy per unit volume/p a2

E,F,G flux vector of transformed Navier-Stokes equations

H source term vector

I identity matrix

J Jocabian of the transformation

k turbulent kinetic energy/a!

£ mixing length

M Mach number

p pressure/P a2

*Pr Prandtl number ,

*q vector of dependant variables in transformed equations

Re Reynolds number, p,, a'Dp,

SRt turbulent Reynolds number, k2/ve

S source terms in the k-c equations

S viscous flux vector

*t physical time

*u,v,w Cartesian velocity components/a,,

IJ,V,W Contravariant velocities/a,

ufriction velocity, ;7T
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LIST OF SYMBOLS (Cont'd)

xyz physical Cartesian coordinates P

law of the wall coordinate, p u Y/w-
wt w

a angle of attack

y ratio of specific heats P

K coefficient of thermal conductivity

P coefficient of viscosity

,n, transformed coordinates in axial, circumferential and normal p
directions

p density/p i

c turbulent dissipation rate/(aS/D)

T transformed time

shear stress at the wall

ci rcumferenti al angle
S

v kinematic viscosity, u/p

0k ~0c empirical constants in the k-c equations

A smoothing coefficient

vorticity

Superscript

• critical value S

Subscript

t turbulent

w wall conditions

- free stream conditions
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